Bromoantimonates(III) vs. Bromobismuthates(III): Differences in the Tendency for the Formation of Polynuclear Complexes
- 作者: Usoltsev A.N.1, Korol’kov I.V.1, Adonin S.A.1
-
隶属关系:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- 期: 卷 49, 编号 6 (2023)
- 页面: 341-346
- 栏目: Articles
- URL: https://medjrf.com/0132-344X/article/view/667502
- DOI: https://doi.org/10.31857/S0132344X22600400
- EDN: https://elibrary.ru/UPZMDC
- ID: 667502
如何引用文章
详细
Pyridine-based Sb(III) bromide complexes with doubly charged cations, (PyC3)3[Sb2Br9]2 (I), (PyC4)[Sb2Br8] (II), (PyC5)2[α-Sb4Br16] (III), (PyC6)2[Sb2Br10] (IV), (4-MePyC2)2[Sb2Br10] (V), (4‑MePyC3)2[α-Sb4Br16] (VI), and (4-MePyC5)2[α-Sb4Br16] (VII), were synthesized and characterized by X-ray diffraction (CCDC nos. 2204718–2204724). The structures of these compounds were compared with the structures of related bromobismuthates(III).
作者简介
A. Usoltsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: adonin@niic.nsc.ru
Россия, Новосибирск
I. Korol’kov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: adonin@niic.nsc.ru
Россия, Новосибирск
S. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
编辑信件的主要联系方式.
Email: adonin@niic.nsc.ru
Россия, Новосибирск
参考
- Wu L.-M., Wu X.-T., Chen L. // Coord. Chem. Rev. 2009. V. 253. № 23–24. P. 2787. https://doi.org/10.1016/J.CCR.2009.08.003
- Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2016. V. 312. P. 1. https://doi.org/10.1016/J.CCR.2015.10.010
- Yue C.-Y., Hu B., Lei X.-W. et al. // Inorg. Chem. 2017. V. 56. № 18. P. 10962. https://doi.org/10.1021/acs.inorgchem.7b01171
- Lei X.-W., Yue C.-Y., Wang S. et al. // Dalton Trans. 2017. V. 46. № 13. P. 4209. https://doi.org/10.1039/c7dt00262a
- Lei X.-W., Yue C.-Y., Wu F. et al. // Inorg. Chem. Commun. 2017. V. 77. P. 64. https://doi.org/10.1016/J.INOCHE.2017.01.010
- Lei X.-W., Yue C.-Y., Zhao J.-Q. et al. // Inorg. Chem. 2015. V. 54. № 22. P. 10593. https://doi.org/10.1021/acs.inorgchem.5b01324
- Bi W., Leblanc N., Mercier N. et al. // Chem. Mater. 2009. V. 21. № 18. P. 4099. https://doi.org/10.1021/cm9016003
- Wojta M., Bator G., Jakubas R. et al. // J. Phys. Condens. Matter 2003. V. 15. № 33. P. 5765. https://doi.org/10.1088/0953-8984/15/33/310
- Leblanc N., Mercier N., Allain M. et al. // J. Solid State Chem. 2012. V. 195. P. 140. https://doi.org/10.1016/J.JSSC.2012.03.020
- Marchenko E.I., Fateev S.A., Petrov A.A. et al. // J. Phys. Chem. C. 2019. V. 123. № 42. P. 26036. https://doi.org/10.1021/acs.jpcc.9b08995
- Frolova L.A., Anokhin D.V., Piryazev A.A. et al. // J. Phys. Chem. Lett. 2017. V. 8. № 7. P. 1651. https://doi.org/10.1021/acs.jpclett.7b00210
- Belich N.A., Tychinina A.S., Kuznetsov V.V. et al. // Mendeleev Commun. 2018. V. 28. № 5. P. 487. https://doi.org/10.1016/j.mencom.2018.09.011
- Fateev S.A., Petrov A.A., Khrustalev V.N. et al. // Chem. Mater. 2018. V. 30. № 15. P. 5237. https://doi.org/10.1021/acs.chemmater.8b01906
- Petrov A.A., Sokolova I.P., Belich N.A. et al. // J. Phys. Chem. C. 2017. V. 121. № 38. P. 20739. https://doi.org/10.1021/acs.jpcc.7b08468
- Fateev S.A., Stepanov N.M., Petrov A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 992. https://doi.org/10.1134/S0036023622070075
- Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
- Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311. https://doi.org/10.1016/j.mencom.2022.05.006
- Petrov A.A., Fateev S.A., Khrustalev V.N. et al. // Chem. Mater. 2020. V. 32. № 18. P. 7739. https://doi.org/10.1021/acs.chemmater.0c02156
- Sharutin V.V., Egorova I.V., Klepikov N.N. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1768. https://doi.org/10.1134/S0036023609110126
- Krautscheid H. // Zeitschrift Anorg. Allg. Chem. 1995. V. 621. № 12. P. 2049. https://doi.org/10.1002/zaac.19956211212
- Krautscheid H., Vielsack F. // Angew. Chem. Int. Ed. 1995. V. 34. № 18. P. 2035. https://doi.org/10.1002/anie.199520351
- Adonin S.A., Sokolov M.N., Fedin V.P. // Russ. J. Inorg. Chem. 2017. V. 62. № 14. https://doi.org/10.1134/S0036023617140029
- Mercier N., Louvain N., Bi W. // CrystEngComm. 2009. V. 11. № 5. P. 720. https://doi.org/10.1039/b817891g
- Adonin S.A., Gorokh I.D., Novikov A.S. et al. // Polyhedron. 2018. V. 139. https://doi.org/10.1016/j.poly.2017.11.002
- Adonin S.A., Gorokh I.D., Samsonenko D.G. et al. // Polyhedron. 2019. V. 159. P. 318. https://doi.org/10.1016/J.POLY.2018.12.017
- Fisher G.A., Norman N.C. // Adv. Inorg. Chem. 1994. V. 41. P. 233. https://doi.org/10.1016/S0898-8838(08)60173-7
- Kotov V.Y., Ilyukhin A.B., Simonenko N.P. et al. // Polyhedron. 2017. V. 137. P. 122. https://doi.org/10.1016/J.POLY.2017.08.016
- Kotov V.Y., Simonenko N.P., Ilyukhin A.B. // Mendeleev Commun. 2017. V. 27. № 5. P. 454. https://doi.org/10.1016/J.MENCOM.2017.09.007
- Kotov V.Y., Ilyukhin A.B., Sadovnikov A.A. et al. // Mendeleev Commun. 2017. V. 27. № 3. P. 271. https://doi.org/10.1016/J.MENCOM.2017.05.018
- Buikin P.A., Rudenko A.Y., Baranchikov A.E. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 6. P. 373. https://doi.org/10.1134/S1070328418060015
- Chang J.-C., Ho W.-Y., Sun I.-W. et al. // Polyhedron. 2010. V. 29. № 15. P. 2976. https://doi.org/10.1016/j.poly.2010.08.010
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Hübschle C.B., Sheldrick G.M., Dittrich B. et al. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
- Zhang W., Sun Z., Zhang J. et al. // J. Mater. Chem. C. 2017. V. 5. № 38. P. 9967. https://doi.org/10.1039/c7tc02721d
- Stewart J.M., McLaughlin K.L., Rossiter J.J. et al. // Inorg. Chem. 1974. V. 13. № 11. P. 2767. https://doi.org/10.1021/ic50141a046
- Terao H., Ninomiya S., Hashimoto M. et al. // J. Mol. Struct. 2010. V. 965. № 1–3. P. 68. https://doi.org/10.1016/J.MOLSTRUC.2009.11.040
- Kharrat H., Kamoun S., Michaud F. // Acta Crystallogr. E. 2013. V. 69. № 7. P. M353. https://doi.org/10.1107/S1600536813014335
- Sun Z., Zeb A., Liu S. et al. // Angew. Chem. Int. Ed. 2016. V. 55. № 39. P. 11854. https://doi.org/10.1002/anie.201606079
- Hall M., Nunn M., Begley M.J. et al. // Dalton Trans. 1986. № 6. P. 1231. https://doi.org/10.1039/DT9860001231
- Wojtaś M., Jakubas R., Ciunik Z. et al. // J. Solid State Chem. 2004. V. 177. № 4–5. P. 1575. https://doi.org/10.1016/J.JSSC.2003.12.011
- Bujak M., Zaleski J. // Acta Crystallogr. E. 2007. V. 63. № 1. P. M102. https://doi.org/10.1107/S1600536806051920
- Jaschinski B., Blachnik R., Reuter H. // Z. Anorg. Allg. Chem. 1999. V. 625. № 4. P. 667. https://doi.org/10.1002/(SICI)1521-3749(199904)625: 4<667::AID-ZAAC667>3.0.CO;2-B
- Porter S.K., Jacobson R.A. // J. Chem. Soc. A. 1970. P. 1359. https://doi.org/10.1039/J19700001359
- Jha N.K., Rizvi S.S.A. // J. Inorg. Nucl. Chem. 1974. V. 36. № 7. P. 1479. https://doi.org/10.1016/0022-1902(74)80610-X
- Wang Q., Zhang W.-Y., Shi P.-P. et al. // Chem. – An Asian J. 2018. V. 13. № 19. P. 2916. https://doi.org/10.1002/asia.201801056
- Wang Y.K., Wu Y.L., Lin X.Y. et al. // J. Mol. Struct. 2018. V. 1151. P. 81. https://doi.org/10.1016/j.molstruc.2017.09.033
- Dennington A.J., Weller M.T. // Dalton Trans. 2018. V. 47. № 10. P. 3469. https://doi.org/10.1039/c7dt04280a
- Sharutin V.V., Pakusina A.P., Sharutina O.K. et al. // Russ. J. Coord. Chem. 2004. V. 30. № 8. P. 541. https://doi.org/10.1023/B:RUCO.0000037432.61330.07
- Antolini L., Benedetti A., Fabretti A.C. et al. // Dalton Trans. 1988. № 9. P. 2501. https://doi.org/10.1039/DT9880002501
- Wojtaś M., Bil A., Gagor A. et al. // CrystEngComm. 2016. V. 18. № 14. P. 2413. https://doi.org/10.1039/c6ce00160b
- Alcock N.W., Ravindran M., Willey G.R. // Chem. Commun. 1989. № 15. P. 1063. https://doi.org/10.1039/C39890001063
- Krautscheid H. // Z. Anorg. Allg. Chem. 1999. V. 625. № 2. P. 192. https://doi.org/10.1002/(SICI)1521-3749(199902)625: 2<192::AID-ZAAC192>3.0.CO;2-6
- Usoltsev A.N., Sukhikh T.S., Novikov A.S. et al. // Inorg. Chem. 2021. https://doi.org/10.1021/acs.inorgchem.0c03699
- Adonin S.A., Rakhmanova M.I., Samsonenko D.G. et al. // Inorg. Chim. Acta. 2016. V. 450. https://doi.org/10.1016/j.ica.2016.06.010
- Usol’tsev A.N., Sokolov M.N., Fedin V.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 827. https://doi.org/10.1134/S003602362106019X
- Adonin S.A., Gorokh I.D., Samsonenko D.G. et al. // Inorg. Chim. Acta. 2018. V. 469. https://doi.org/10.1016/j.ica.2017.08.058
- Usol’tsev A.N., Petrov M.D., Korol’kov I.V. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 9. P. 620. https://doi.org/10.1134/S107032842108008X
- Adonin S.A., Sokolov M.N., Fedin V.P. // J. Struct. Chem. 2019. V. 60. № 10. P. 1655. https://doi.org/10.1134/S0022476619100111
