Structure of Copper(II) N-Methylbenzoylhydroxamate in the Crystalline State and in Solution

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The geometrical structure of CuL2 (I), where L = R1N(O)–(O)CR2, R1 = Me, R2 = Ph, was studied by X-ray diffraction in the crystalline state and by stationary ESR spectroscopy in solution. In the crystalline state, I is a chain polynuclear complex. According to ESR data, in frozen solutions, complex I exists as three species, two being mononuclear and one being binuclear. The magnetic resonance parameters and concentrations of the species in frozen solutions were determined. The electronic structure of the complex with full geometry optimization of all systems was calculated in terms of the unrestricted density functional theory (DFT) method.

Sobre autores

A. Rotov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: nnefimov@yandex.ru
Россия, Москва

I. Yakushev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: nnefimov@yandex.ru
Россия, Москва

V. Zhilov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: nnefimov@yandex.ru
Россия, Москва

A. Kornev

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia

Email: nnefimov@yandex.ru
Россия, Черноголовка

E. Ugolkova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: nnefimov@yandex.ru
Россия, Москва

N. Breslavskaya

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: nnefimov@yandex.ru
Россия, Москва

E. Timokhina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: nnefimov@yandex.ru
Россия, Москва

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: nnefimov@yandex.ru
Россия, Москва

V. Minin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Autor responsável pela correspondência
Email: nnefimov@yandex.ru
Россия, Москва

Bibliografia

  1. Codd R. // Coord. Chem. Rev. 2008. V. 252. P. 1387.
  2. Baugman R.G., Brink D.J., Butle J.M., New P.R. // Acta Crystallogr. C. 2000. V. 56. P. 528.
  3. Dzyuba V.I., Koval L.I., Dudko A.V. et al. // J. Coord. Chem., 2014, V. 67. № 8. P. 1437.
  4. Rotov A.V., Ugolkova E.A., Lermontova E.Kh. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 7. P.866. https://doi.org/10.1134/S0036023615070128
  5. Rotov A.V, Yakushev I.A., Ugolkova E.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 6. P. 376. https://doi.org/10.1134/S1070328421060051
  6. Rotov A.V., Ugolkova E.A., Efimov N.N. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 12. P. 1474. https://doi.org/10.1134/S0036023614120201
  7. Rotov A.V., Ugolkova E.A., Efimov N.N. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 7. P. 186. https://doi.org/10.1134/S0036023613020216
  8. Kofman V., Shane J.J., Dikanov S.A. et al. // J. Am. Chem. Soc. 1995. V. 117. P. 12771.
  9. Dzyba V.I., Ternovaya T.V., Kostromina N.A., Ksaverov A.N. // Ukr. Khim. Zhur. 1986. V. 52. № 5. C. 453.
  10. APEX3, SAINT and SADABS. Madison (WI, USA): Bruker AXS Inc., 2016.
  11. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P.3.
  12. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  13. Donomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  14. Ракитин Ю.В., Ларин Г.М., Минин В.В. // Интерпретация спектров ЭПР координационных соединений. М.: Наука, 1993. 339 с.
  15. Wilson R., Kivelson D. // J. Chem. Phys. 1966. V. 44. № 1. P. 154.
  16. Лебедев Я.С., Муромцев В.И. // ЭПР и релаксация cтабилизированных радикалов. М.: Химия, 1972. С. 25.
  17. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
  18. Perdew J.P. // Phys. Rev. B. 1986. V. 33. P. 8822.
  19. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
  20. Gómez-Piñeiro R.J., Pantazis D.A., Orio M. // Chem. Phys. Chem. 2020. V. 21. P. 2667.
  21. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
  22. Perdew J.P., Wang Y. // Phys. Rev. B. 1992. V. 45. P. 13244.
  23. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. P. 1057.
  24. Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. V. 152. P. 224108.
  25. Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. P. 2832.
  26. Alvarez S. // Dalton Trans. 2013. V. 42. P. 8617.
  27. Broun D.A., McKeith D., Glass W.K. // Inorg. Chem. Acta. 1979. V. 35. P. 35.
  28. Garipov R.R., Shtyrlin V.G., Safin D.A. et al. // Chem. Phys. 2006. V. 320. P. 59.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (251KB)
3.

Baixar (252KB)
4.

Baixar (47KB)

Declaração de direitos autorais © А.В. Ротов, И.А. Якушев, В.И. Жилов, А.Б. Корнев, Е.А. Уголкова, Н.Н. Бреславская, Е.Н. Тимохина, Н.Н. Ефимов, В.В. Минин, 2023