Nickel(II) and Copper(II) Dicyanoargentate Complexes with Ethylenediamine and 4,4´-Bipyridyl Ligands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reactions of an aqueous solution of potassium dicyanoargentate with a mixture of nickel(II) or copper(II) chloride and ethylenediamine or 4,4´-bipyridyl in ethanol afford coordination polymers [Ni(En)2(Ag(CN)2)][Ag(CN)2] (I), [Cu(En)2(Ag(CN)2)][Ag(CN)2] (II), and [Cu(4,4´-Bipy)2(Ag(CN)2)2] (III) characterized by XRD (CIF files CCDC nos. 2225984 (I), 2214320 (II), and 2229270 (III)) and IR spectroscopy. According to the XRD data, the crystals of complexes I and II are formed by 1D chains {··NC– Ag–CN–M(En)2··}n (M = Ni (I), Cu (II)) linked with each other by the dicyanoargentate anions via argentophilic contacts (Ag···Ag 3.288(8) Å (I), 3.1616(14) Å (II)). The crystal of compound III consists of independent interpenetrating 3D networks built of polymer layers {Cu[Ag(CN)2]2}n bound to each other by the 4,4´-bipyridyl molecules. The bipyridyl linkers connect the Cu centers with the Ag centers of the [Ag(CN)2] anions thus providing the tridentate coordination of the silver atoms. No Ag···Ag interactions are observed in the crystal of complex III.

Full Text

Restricted Access

About the authors

D. R. Pashnin

South Ural State University (National Research University)

Email: Shepher56@gmail.com
Russian Federation, Chelyabinsk

D. P. Shevchenko

South Ural State University (National Research University)

Author for correspondence.
Email: Shepher56@gmail.com
Russian Federation, Chelyabinsk

V. V. Sharutin

South Ural State University (National Research University)

Email: Shepher56@gmail.com
Russian Federation, Chelyabinsk

O. K. Sharutina

South Ural State University (National Research University)

Email: Shepher56@gmail.com
Russian Federation, Chelyabinsk

References

  1. Batten S.R., Champness N.R. // Phil. Trans. R. Soc., A. 2017. V. 375. Art. 20160032. https://doi.org/10.1098/rsta.2016.0032
  2. Furukawa H., Cordova K.E., O´Keeffe M., Yaghi O.M. // Science. 2013. V. 341. № 6149. Art. 1230444. https://doi.org/10.1126/science.1230444
  3. Liu J., Chen L., Cui H., Zhang J. et al. // Chem. Soc. Rev. 2014. V. 43. № 16. P. 6011. https://doi.org/10.1039/C4CS00094C
  4. Zhang H., Cai J., Feng X.-L et al. // Inorg. Chem. Commun. 2002. V. 5. № 9. P. 637. https://doi.org/10.1016/S1387-7003(02)00514-2
  5. Lin Y.-Y., Lai S.-W., Che C.-M et al. // Inorg. Chem. 2005. V. 44. № 5. P. 1511. https://doi.org/10.1021/ic048876k
  6. Marinescu G., Madalan A.M., Andruh M. // J. Coord. Chem. 2015. V. 68. № 3. P. 479. http://doi.org/10.1080/00958972.2014.997721
  7. Wang J.-Y., Zhang L.-Z., Gu W et al. // J. Coord. Chem. 2006. V. 59. № 15. P. 1685. http://doi.org/10.1080/00958970600580142
  8. Wang J.-Y., Gu W., Wang W.-Z et al. // Chin. J. Chem. 2006. V. 24. № 4. P. 493. https://doi.org/10.1002/cjoc.200690095
  9. Baril-Robert F., Li X., Katz M.J et al. // Inorg. Chem. 2011. V. 50. № 1. P. 231. https://doi.org/10.1021/ic101841a
  10. Galet A., Niel V., Muñoz M.C., Real J.A. // J. Am. Chem. Soc. 2003. V. 125. № 47. P. 14224. https://doi.org/10.1021/ja0377347
  11. Wang L.-F., Zhuang W.-M., Huang G.-Z et al. // Chem. Sci. 2019. V. 10. № 32. P. 7496. https://doi.org/10.1039/c9sc02274k
  12. Gural´skiy I.A., Shylin S.I., Golub B.O et al. // New J. Chem. 2016. V. 40. № 11. P. 9012. https://doi.org/10.1039/C6NJ01472K
  13. Arcís-Castillo Z., Muñoz M.C., Molnár G. et al. // Chem. Eur. J. 2013. V. 19. № 21. P. 6851. https://doi.org/10.1002/chem.201203559
  14. Yoshida K., Akahoshi D., Kawasaki T et al. // Polyhedron. 2013. V. 66. P. 252. http://doi.org/10.1016/j.poly.2013.05.003
  15. Liu W., Peng Y.-Y., Wu S.-G. // Angew. Chem. Int. Ed. 2017. V. 56. № 47. P. 14982. http://doi.org/10.1002/anie.201708973
  16. Etaiw S. El-din H., El-bendary M.M. // Inorg. Chim. Acta. 2015. V. 435. P. 167. http://doi.org/10.1016/j.ica.2015.06.020
  17. Karadağ A., Korkmaz N., Aydin A. , Tekin Ş., Yanar Y., Yerli Y., Korkmaz Ş.A et al.. // New J. Chem. 2018. V. 42. № 6. P. 4679. https://doi.org/10.1039/c7nj04796g
  18. Korkmaz N., Karadağ A., Aydin A. et al. // New J. Chem. 2014. V. 38. № 10. P. 4760. https://doi.org/10.1039/c4nj00851k
  19. Korkmaz N. // Turk. J. Chem. 2020. V. 44. № 4. P. 1110. https://doi.org/10.3906/kim-2004-42
  20. Sharutin, V.V. Sharutina O.K., Popkova M.A., et al. Russ. J. Inorg. Chem., 2019, vol. 64, no. 12, p. 1548. https://doi.org/10.1134/S0044457X19120158
  21. Sharutin V.V. and Popkova M.A. Vest. YuUrGU. Ser.Khim., 2019, vol. 11, no. 2, p. 5. https://doi.org/10.14529/chem190201
  22. Popkova M.A. and Sharutin V.V., Vest. YuUrGU. Ser. Khim., 2021, vol. 13, no. 4, p. 110. https://doi.org/10.14529/chem210409
  23. SMART. SAINT-Plus. V. 5.0. Data Collection, Processing Software for the SMART System, Madison (WI, USA): Bruker AXS Inc., 1998.
  24. SHELXTL/PC. V. 5.10. An Integrated System for Solving, Refining, Displaying Crystal Structures from Diffraction Data, Madison (WI, USA): Bruker AXS Inc., 1998.
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  26. Černák J., Chomič J., Gravereau P. et al. // Inorg. Chim. Acta. 1998. V. 281. № 2. P. 134. https://doi.org/10.1016/S0020-1693(98)00156-X
  27. Suárez-Varela J., Sakiyama H., Cano J., Colacio E. // Dalton Trans. 2007. № 2. P. 249. https://doi.org/10.1039/B611684A
  28. Pretsch E., Buhlman P., Affolter C. Structure Determination of Organic Compounds. Tables of Spectral Data. Springer, 2000.
  29. Nawaz S., Ghaffar A., Monim-ul-Mehboob M. et al. // Z. Naturforsch. B. 2007. V. 72. № 1. P. 43. https://doi.org/10.1515/znb-2016-0154
  30. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
  31. Niel V., Muñoz M.C., Gaspar A.B et al. // Chem. Eur. J. 2002. V. 8. № 11. P. 2446. https://doi.org/10.1002/1521-3765(20020603) 8:11<2446::AID-CHEM2446>3.0.CO;2-K
  32. Soma T., Yuge H, Iwamoto T. // Angew. Chem. 1994. V. 106. № 15–16. P. 1746. https://doi.org/10.1002/ange.19941061547

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of a fragment of complex I.

Download (159KB)
3. Fig. 2. Spatial organization of complex I (projection along the b axis; hydrogen atoms are not shown).

Download (138KB)
4. Fig. 3. Structure of a fragment of complex III.

Download (205KB)
5. Fig. 4. Independent interpenetrating 3D polymer networks in the structure of complex III.

Download (193KB)

Copyright (c) 2024 Российская академия наук