Half-Sandwich Iminophosphonamide Rhodium Complexes as Highly Efficient Catalysts for Dehydrogenation of Dimethylamine-Borane

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dehydrogenation of dimethylamine-borane (DMAB) catalyzed by the iminophosphonamide rhodium(III) complexes [Cp*RhCl{Ph2P(N–p-Tol)(NR)}] (Iа, R = p-Tol; Ib, R = Me) in situ formed fulvene [(η4-C5Me4CH2)Rh(NPN)] (IIa, IIb) and diene [(η4-C5Me5H)Rh(NPN)] (IIIa, IIIb) rhodium(I) derivatives is studied. Catalysts IIIa and IIIb turn out to be the most active and demonstrate a TOF activity of 110 (IIIа) and 540 h–1 (IIIb) at 40°С in toluene. The activity decreases significantly in more polar and coordinating THF. At the same time, the rate of DMAB dehydrogenation by complexes Iа and Ib is lower by 10–30 times, and fulvene complexes Iа and Ib are rapidly deactivated after the active initial period (<20% conversion). The kinetic studies show that the reaction has the first order with respect to the substrate and catalyst. The model 11В NMR experiments confirm that the reaction proceeds via the intermediate formation of a monomer Me2N=BH2, which rapidly dimerizes to (Me2N–BH2)2. The mechanism of DMAB dehydrogenation with the formation of unstable hydride intermediate [Cp*RhH{Ph2P(N–p-Tol)(NR)}] (IVa, IVb) is proposed on the basis of the preliminarily 31Р NMR results and published data.

Texto integral

Acesso é fechado

Sobre autores

R. Nekrasov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
Rússia, Moscow

T. Peganova

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
Rússia, Moscow

A. Kal´sin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
Rússia, Moscow

N. Belkova

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Autor responsável pela correspondência
Email: nataliabelk@ineos.ac.ru
Rússia, Moscow

Bibliografia

  1. Colebatch A.L., Weller A.S. // Chem. Eur. J. 2019. V. 25. P. 1379. https://doi.org/10.1002/chem.201804592
  2. Staubitz A., Robertson A.P.M., Manners I. // Chem. Rev. 2010. V. 110. p. 4079. https://doi.org/10.1021/cr100088b
  3. Du V.A., Jurca T., Whittell G.R., Manners I. // Dalton Trans. 2016. V. 45. P. 1055. https://doi.org/10.1039/C5DT03324A
  4. Resendiz-Lara D.A., Stubbs N.E., Arz M.I. et al. // Chem. Commun. 2017. V. 53. P. 11701.
  5. Kumar A., Daw P., Milstein D. et al. // Chem. Rev. 2022. V. 122. P. 385. https://doi.org/10.1021/acs.chemrev.1c00412
  6. Alig L., Fritz M., Schneider S. et al. // Chem. Rev. 2019. V. 119. P. 2681. https://doi.org/10.1021/acs.chemrev.8b00555
  7. Glüer A., Förster M., Celinski V. R. et al. // ACS Catal. 2015. V. 5. P. 7214. https://doi.org/10.1021/acscatal.5b02406
  8. Luconi L., Osipova E. S., Giambastiani G. et al. // Organometallics. 2018. V. 37. P. 3142. https://doi.org/10.1021/acs.organomet.8b00488
  9. Todisco., S., Luconi., L., Giambastiani., G et al. // Inorg. Chem. 2017. V. 56. P. 4296. https://doi.org/10.1021/acs.inorgchem.6b02673
  10. Titova. E.M., Osipova. E.S., Pavlov. A.A. et al. // ACS Catal. 2017. V. 7. P. 2325. https://doi.org/10.1021/acscatal.6b03207
  11. Sewell L.J., Huertos M.A., Dickinson M.E. et al. // Inorg. Chem. 2013. V. 52. P. 4509. https://doi.org/10.1021/ic302804d
  12. Johnson H.C., Leitao E.M., Whittell G.R. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 9078. https://doi.org/10.1021/ja503335g
  13. Douglas T.M., Chaplin A.B., Weller A S. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 15440. http://dx.doi.org/10.1021/ja906070r
  14. Kirkina V.A., Osipova E.S., Filippov O.A. et al. // Mendeleev Commun. 2020. V. 30. P. 276. https://doi.org/10.1016/j.mencom.2020.05.004
  15. Brodie C.N., Sotorrios L., Boyd T.M. et al. // ACS Catal. 2022, vol. 12. P. 13050. https://doi.org/10.1021/acscatal.2c03778
  16. Brodie C.N., Boyd T.M., Sotorríos L. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 21010. https://doi.org/10.1021/jacs.1c10888
  17. White C., Yates A., Maitlis P.M. et al. // Inorg. Synth. 1992. V. 29. P. 228. https://doi.org/10.1002/9780470132609.ch53
  18. Nekrasov R.I., Peganova T.A., Fedyanin I.V. et al. // Inorg. Chem. 2022. V. 61. P. 16081. https://doi.org/10.1021/acs.inorgchem.2c02478
  19. Kruger C.R., Niederprum H. // Inorg. Synth. 1966. V. 8. P. 15.
  20. Pal S., Kusumoto S., Nozaki K. // Organometallics. 2018. V. 37. P. 906. https://doi.org/10.1021/acs.organomet.7b00889
  21. Sinopalnikova I.S., Peganova T.A., Belkova N.V. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 2285. https://doi.org/10.1002/ejic.20170134423
  22. Pal S., Iwasaki T., Nozaki K. // Dalton Trans. 2021, V. 50. P. 7938. https://doi.org/10.1039/D1DT01705E
  23. Dallanegra R., Robertson A.P.M., Chaplin A. B. et al. // Chem. Commun. 2011. V. 47. P. 3763. https://doi.org/10.1039/C0CC05460G
  24. Gulyaeva E.S., Osipova E.S., Kovalenko S.A. et al. // Chem. Sci. 2024. V. 15. P. 1409. https://doi.org/10.1039/D3SC05356C

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Synthesis of complexes IIa, IIb and IIIa, IIIb.

Baixar (98KB)
3. Scheme 2. The proposed isomerization of IIIa in IVa under the action of DMAB, accompanied by the transfer of a hydrogen atom from Cp*H to the Rh atom and the release of H2.

Baixar (124KB)
4. Fig. 1. Dehydrogenation of DMAB catalyzed by complexes IIIa, IIIb in toluene and THF. Conditions: T = 40°C, [Rh] = 5.8 mM, [DMAB] = 0.145 M, Vp-ra = 2.1 ml.

Baixar (85KB)
5. Fig. 2. Dehydrogenation of DMAB catalyzed by complexes Ia, Ib and IIa, IIb in toluene, in comparison with IIIa, IIIb. Conditions: T = 40°C, [Rh] = 2.9 mM, [DMAB] = 0.145 M, Vp-ra = 2.1 ml.

Baixar (105KB)
6. Fig. 3. Dehydrogenation of DMAB (0.145 M) catalyzed by complex IIIb at 40 °C in toluene, depending on the concentration of the catalyst: first-order kinetic curves (left) and the dependence of knabl on [Rh].

Baixar (158KB)
7. Fig. 4. Kinetics of dehydrogenation of DMAB (0.085 M, δB = 13 m.d.) catalyzed by complex IIIa (0.008 M) at 18 ° C in toluene-d8. Changes in the NMR spectrum of the 11V mixture.

Baixar (262KB)
8. Fig. 5. Graphs of changes in the relative concentrations of boron-containing reaction products (left) and a first-order kinetic curve with calculation of the observed reaction rate constant (right). The conditions are as shown in Fig. 4.

Baixar (118KB)

Declaração de direitos autorais © Российская академия наук, 2024