Synthesis of Halogen-Substituted [12]Mercuracarborands-4. Crystal Structure of {[(9,12-I2-C2B10H8-1,2-Hg)4]Cl}Na(H2O)n

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The reactions of the dilithium derivatives of 9,12-dihalogen-ortho-carboranes 1,2-Li2-C2B10H8-9,12-X2 (X = Cl, Br, I) with mercury chloride HgCl2 afford a number of complexes of the chloride ion with the halogen derivatives of [12] mercuracarborand-4: {[(9,12-X2-C2B10H8-1,2ʹ-Hg)4]Cl}Na · nH2O. The molecular crystal structure of the complex of the
[12]mercuracarborand-4 octaiodine derivative with the chloride ion is determined by X-ray diffraction. The substituents at the periphery of the mercury-containing macrocycle are found to exert a substantial effect on the macrocycle geometry leading to the transition from the planar to butterfly conformation, whose geometry is predetermined by a set of intermolecular interactions in the crystal.

Толық мәтін

Рұқсат жабық

Авторлар туралы

K. Suponitsky

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kirshik@yahoo.com
Ресей, Moscow

S. Anufriev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: kirshik@yahoo.com
Ресей, Moscow

A. Shmalko

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: kirshik@yahoo.com
Ресей, Moscow

I. Sivaev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: sivaev@ineos.ac.ru
Ресей, Moscow

Әдебиет тізімі

  1. Frankland, E., Philos. Trans., 1852, vol. 142, p. 417. https://www.jstor.org/stable/108548
  2. Frankland, E., Ann., 1853, vol. 85, no. 3, p. 329. https://doi.org/10.1002/jlac.18530850308
  3. Frankland, E. and Duppa, B.F., J. Chem. Soc., 1863, vol. 16, p. 415. https://doi.org/10.1039/JS8631600415
  4. Frankland, E. and Duppa, B.F., Ann., 1864, vol. 130, no. 1, p. 104. https://doi.org/10.1002/jlac.18641300110
  5. Geier, D.A., King, P.G., Hooker, B.S., et al., Clin. Chim. Acta, 2015, vol. 444, p. 212. https://doi.org/10.1016/j.cca.2015.02.030
  6. Makarova, L.G. and Nesmeyanov, A.N., Methods of Elemento-organic Chemistry. Vol. 4. The Organic Compounds of Mercury, Amsterdam, 1967.
  7. Kuzʹmina, L.G. and Struchkov, Yu.T., Croat. Chem. Acta, 1984, vol. 57, no. 4, p. 701. https://hrcak.srce.hr/194141
  8. Sivaev, I.B. and Stogniy, M.Yu., Russ. Chem. Bull., 2019, vol. 68, no. 2, p. 217. https://doi.org/10.1007/s11172-019-2379-5
  9. Pearce, K.G., Dinoi, C., Schwamm, R.J., et al., Adv. Sci., 2023, vol. 10, no. 31, p. 2304765. https://doi.org/10.1002/advs.202304765
  10. Larock, R.C., Angew. Chem. Int. Ed., 1978, vol. 17, no. 1, p. 27. https://doi.org/10.1002/anie.197800271
  11. Taylor, T.J., Burress, C.N., and Gabbai, F.P., Organometallics, 2007, vol. 26, no. 22, p. 5252. https://doi.org/10.1021/om070125d
  12. Yakovenko, A.A., Gallegos, J.H., Antipin, M.Yu., and Timofeeva, T.V., Cryst. Growth Des., 2009, vol. 9, no. 1, p. 66. https://doi.org/10.1021/cg8006603
  13. Yakovenko, A.A., Gallegos, J.H., Antipin, M.Yu., et al., Cryst. Growth Des., 2011, vol. 11, no. 9, p. 3964. https://doi.org/10.1021/cg200547k
  14. Himmelspach, A., Zahres, M., and Finze, M., Inorg. Chem., 2011, vol. 50, no. 8, p. 3186. https://doi.org/10.1021/ic200330d
  15. Shur, V.B. and Tikhonova, I.A., Russ. Chem. Bull., 2003, vol. 52, no. 12, p. 2539. https://doi.org/10.1023/B:RUCB.0000019872.65342.9a
  16. Dolgushin, F.M. and Eremenko, I.L., Russ. Chem. Rev., 2021, vol. 90, no. 12, p. 1493. https://doi.org/10.1070/rcr4998
  17. Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Coord. Chem. Rev., 2022, vol. 469, p. 214636. https://doi.org/10.1016/j.ccr.2022.214636
  18. Loveday, O., Jover, J., and Echeverria, J., Inorg. Chem., 2022, vol. 61, no. 32, p. 12526. https://doi.org/10.1021/acs.inorgchem.2c00921
  19. Rozhkov, A.V., Katlenok, E.A., Zhmykhova, M.V., et al., Inorg. Chem. Front., 2023, vol. 10, no. 2, p. 493. https://doi.org/10.1039/D2QI02047E
  20. Wedge, T.J. and Hawthorne, M.F., Coord. Chem. Rev., 2003, vol. 240, nos. 1–2, p. 111. https://doi.org/10.1016/S0010-8545(02)00259-X
  21. Sivaev, I.B., Anufriev, S.A., and Shmalko, A.V., Inorg. Chim. Acta, 2023, vol. 547, p. 121339. https://doi.org/10.1016/j.ica.2022.121339
  22. Anufriev, S.A., Timofeev, S.V., Zhidkova, O.B., et al., Crystals, 2022, vol. 12, no. 9, 1251. https://doi.org/10.3390/cryst12091251
  23. Zhidkova, O.B., Druzina, A.A., Anufriev, S.A., et al., Molbank, 2022, vol. 2022, no. 1, p. M1347. https://doi.org/10.3390/M1347
  24. Zheng, Z., Jiang, W., Zinn, A.A., et al., Inorg. Chem., 1995, vol. 34, no. 8, p. 2095. https://doi.org/10.1021/ic00112a023
  25. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Burlington: Butterworth-Heinemann, 2009.
  26. APEX2 and SAINT, Madison: Bruker AXS Inc., 2014.
  27. Sheldrick, G.M., Acta Cryst., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053229614024218
  28. Bayer, M.J., Jalisatgi, S.S., Smart, B., et al., Angew. Chem. Int. Ed., 2004, vol. 43, no. 14, p. 1854. https://doi.org/10.1002/anie.200352899
  29. Zinn, A.A., Knobler, C.B., Harwell, D.E., and Hawthorne, M.F., Inorg. Chem., 1999, vol. 38, no. 9, p. 2227. https://doi.org/10.1021/ic9811244
  30. Yang, X., Knobler, C.B., Zheng, Z., and Hawthorne, M.F., J. Am. Chem. Soc., 1994, vol. 116, no. 16, p. 7142. https://doi.org/10.1021/ja00095a018
  31. Lee, H., Knobler, C.B., and Hawthorne, M.F., Angew. Chem. Int. Ed., 2001, vol. 40, no. 11, p. 2124. https://doi.org/10.1002/1521-3773(20010601)40:11 <2124::AID-ANIE2124>3.0.CO;2-W
  32. Zheng, Z., Knobler, C.B., Mortimer, M.D., et al., Inorg. Chem., 1996, vol. 35, no. 5, p. 1235. https://doi.org/10.1021/ic951069o
  33. Zheng, Z., Knobler, C.B., and Hawthorne, M.F., J. Am. Chem. Soc., 1995, vol. 117, no. 18, p. 5105. https://doi.org/10.1021/ja00123a012
  34. Puga, A.V., Teixidor, F., Sillanpaa, R., et al., Chem. Eur. J., 2009, vol. 15, no. 38, p. 9764. https://doi.org/10.1002/chem.200900926
  35. Suponitsky, K.Yu., Anisimov, A.A., Anufriev, S.A., et al., Crystals, 2021, vol. 11, no. 4, p. 396. https://doi.org/10.3390/cryst11040396
  36. Suponitsky, K.Yu., Anufriev, S.A., and Sivaev, I.B., Molecules, 2023, vol. 28, no. 2, p. 875. https://doi.org/10.3390/molecules28020875
  37. Lu, Z., Vanga, M., Li, S., et al., Dalton Trans., 2023, vol. 52, no. 13, p. 3964. https://doi.org/10.1039/D2DT03725D

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1

Жүктеу (183KB)
3. Fig. 1. General view of the complex {[(9,12-I2-C2B10H8-1,2ʹ-Hg)4]Cl}- in the representation of atoms by ellipsoidal thermal vibrations with 50% probability. Given: numbering only for the symmetry-independent part of the macrocycle (a); side view of the macrocycle (b). The angle φ between the ‘butterfly wings’ is defined as the angle between the planes of the ortho-carborane nuclei drawn through the atoms C(1), C(2), B(9), B(12), Hg(1), Hg(2) (shown as green dashed lines)

Жүктеу (483KB)
4. Fig. 2. Top left: fragment of the crystal packing of complex III (hydrogen atoms and water molecules are not shown). Top and bottom right: the most tightly bound dimeric associates. Intermolecular contacts are shown as dashed lines and their distances are given in Å

Жүктеу (698KB)

© Российская академия наук, 2024