Adducts of Sterically Hindered Tellurium Catecholate with N-Methylpyrrolidone
- Autores: Petrov P.A.1, Filippova E.A.1, Sukhikh T.S.1
-
Afiliações:
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Edição: Volume 50, Nº 10 (2024)
- Páginas: 661-668
- Seção: Articles
- URL: https://medjrf.com/0132-344X/article/view/667654
- DOI: https://doi.org/10.31857/S0132344X24100033
- EDN: https://elibrary.ru/LPWAYK
- ID: 667654
Citar
Resumo
The formation of adducts of tellurium(IV) 3,6-di-tert-butyl catecholate (Te(Cat36)2) with N-methylpyrrolidone (NMP) is studied. The crystallization from a CH2Cl2–NMP–aromatic hydrocarbon mixture is found to result in the formation of dimeric complexes [{Te(Cat36)2}2(μ-NMP)(μ-arene)] (arene = C6H6, C7H8), whereas mononuclear [Te(Cat36)2(NMP)2] is formed from a CH2Cl2–NMP–alkane mixture. The formation of the adducts with aromatic hydrocarbons indicates a possibility of using the tellurium complexes for the separation of hydrocarbon mixtures, including an industrially important benzene–cyclohexane mixture.
Palavras-chave
Texto integral

Sobre autores
P. Petrov
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: panah@niic.nsc.ru
Rússia, Novosibirsk
E. Filippova
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: panah@niic.nsc.ru
Rússia, Novosibirsk
T. Sukhikh
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: panah@niic.nsc.ru
Rússia, Novosibirsk
Bibliografia
- Poddel’sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291.
- Kaim W. // Inorg. Chem. 2011. V. 50. P. 9752.
- Abakumov G.A., Poddelsky A.I., Grunova E.V. et al. // Angew. Chem., Int. Ed. 2005. V. 44. P. 2767.
- Cherkasov V.K., Abakumov G.A., Grunova E.V. et al. // Chem. Eur. J. 2006. V. 12. P. 3916.
- Poddel’sky A.I., Kurskii Yu.A., Piskunov A.V. et al. // Appl. Organomet. Chem. 2011. V. 25. P. 180.
- Ilyakina E.V., Poddel’sky A.I., Cherkasov V.K., Abakumov G.A. // Mendeleev Commun. 2012. V. 22. P. 208.
- Lado A.V., Piskunov, A.V., Cherkasov, V.K. et al // Russ. J. Coord. Chem. 2006. V. 32. P. 173. doi: 10.1134/S1070328406030031
- Piskunov A.V., Ershova I.V., Fukin G.K., Shavyrin A.S. // Inorg. Chem. Commun. 2013. V. 38. P. 127.
- Piskunov A.V., Meshcheryakova I.N., Fukin G.K. et al. // Dalton Trans. 2013. V. 42. P. 10533.
- Thorwart T., Hartman D., Greb L. // Chem. Eur. J. 2022. V. 23. Art. e202202273.
- Thorwart T., Roth D., Greb L. // Chem. Eur. J. 2021. V. 21. P. 10422.
- Hartmann D., Braner S., Greb L. // Chem. Commun. 2021. V. 57. P. 8572.
- Ansmann N., Thorwart T., Greb L. // Angew. Chem. Int. Ed. 2022. V. 61. Art. e202210132.
- Arsenyeva K.V., Pashanova K.I., Trofimova O.Yu. et al. // New J. Chem. 2021. V. 45. P. 11758.
- Arsenyeva K.V., Klimashevskaya A.V., Pashanova, K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. Art. e6593.
- Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83.
- Klimashevskaya A.V., Arsenyeva K.V., Cherkasov A.V. et al. // J. Struct. Chem. 2023. V. 64. P. 2271. doi: 10.1134/S0022476623120016
- Klimashevskaya A. V., Arsenyeva, K. V., Maleeva A. V. et al. // Eur. J. Inorg. Chem. 2023. Art. e202300540.
- Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mendeleev Commun. 2023. V. 33. P. 733.
- Ershova I.V., Piskunov A.V., Cherkasov V.K. // Russ. Chem. Rev. 2020. V. 89. P. 1157.
- Chegerev M.G., Starikova A.A., Piskunov A.V., Cherkasov V.K. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 252.
- Chegerev M.G., Piskunov A.V., Starikova A.A. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 1087.
- Greb L. // Eur. J. Inorg. Chem. 2022. V. 2022. Art. e202100871.
- Antikainen P.J., Mälkönen P.J. // Z. Anorg. Allg. Chem. 1959. V. 299. P. 292.
- Lindqvist O. // Acta Chem. Scand. 1967. V. 21. P. 1473.
- Annan T.A., Ozarowski A., Tian Z., Tuck D.G. // Dalton Trans. 1992. P. 2931.
- Kieser J.M., Jones L.O., Lin N.J. et al. // Inorg. Chem. 2021. V. 60. P. 3460.
- Petrov P.A., Filippova E.A., Sukhikh T.S. et al. // Inorg. Chem. 2022. V. 61. P. 9184.
- Petrov P.A. // Russ. J. Coord. Chem. 2023. V. 49. P. 357. doi: 10.1134/S1070328423600262
- Petrov P.A., Kadilenko E.M., Sukhikh T.S. et al. // Chem. Eur. J. 2020. V. 26. P. 14688.
- Mahmudov K.T., Kopylovich M.N., Guedes da Silva M.F.C., Pombeiro A.J.L. // Dalton Trans. 2017. V. 46. P. 10121.
- Fourmigué M., Dhaka A. // Coord. Chem. Rev. 2020. V. 403. P. 213084.
- Pale P., Mamane V. // Chem. Eur. J. 2023. V. 29. Art. e202302755.
- Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- Scherpf T., Feichtner K.-S., Gessner V.H. // Angew. Chem. Int. Ed. 2017. V. 56. P. 3275.
- Schmid R. // J. Solution Chem. 1983. V. 12. P. 135.
- O’Quinn G.K., Rudd M.D., Kautz J.A. // Phosphorus, Sulfur, Silicon Relat. Elem. 2002. V. 177. P. 853.
- Fulmer G.R., Miller A.J., Sherden N.H. et al. // Organometallics. 2020. V. 29. P. 2176.
Arquivos suplementares
