Heteroleptic ionic copper(I) complexes based on pyrazolo[1,5-a][1,10]phenanthrolines: synthesis, structure, and photoluminescence

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Heteroleptic copper(I) tetrafluoroborate complexes with pyrazolo[1,5-a][1,10]phenanthrolines (Ln, n = 1–3) and bis[(2-diphenylphosphino)phenyl]ether (POP) were synthesized and structurally characterized. The coordination compounds with the general formula [CuLn(POP)]BF4 · Solv (n = 1, Solv = 0.5MeCN, complex I; n = 2, Solv = 0.5CH2Cl2, complex II; n = 3, Solv = 1.25Et2O, complex III · Et2O) were prepared by the reaction of CuBF4 with Ln and POP in organic solvents (MeCN/CH2Cl2/Et2O) at 1 : 1 : 1 molar ratio. Compound III · Et2O gradually loses solvate molecules to be converted to the complex [CuL3(POP)]BF4 (III). According to single-crystal X-ray diffraction data, the complexes (I, II, III · Et2O) are ionic; in complex cation [CuLn(POP)]+ the coordination environment of the copper atom is a distorted tetrahedron with CuN2P2 chromophore. The photoluminescence properties of the obtained complexes (I–III) were studied in the solid state and in solution. In the absorption spectra of the complexes, a charge transfer band is observed at 380–385 nm; excitation in this range gives rise to two emission bands at 480 and 650 nm in solution. In the solid state, the complexes show photoluminescence only in the red range (λmax = 600–610 nm) with microsecond lifetimes. It was found that complexes I and III with a more perfect tetrahedral environment have quantum yields an order of magnitude higher than the quantum yield observed for complex II.

Толық мәтін

Рұқсат жабық

Авторлар туралы

K. Vinogradova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kiossarin@mail.ru
Ресей, Novosibirsk

M. Rakhmanova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Ресей, Novosibirsk

M. Taigina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University (National Research University)

Email: kiossarin@mail.ru
Ресей, Novosibirsk; Novosibirsk

N. Pervukhina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Ресей, Novosibirsk

D. Naumov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Ресей, Novosibirsk

V. Sannikova

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Ресей, Novosibirsk

I. Filippov

Novosibirsk State University (National Research University); Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Ресей, Novosibirsk; Novosibirsk

D. Kolybalov

Novosibirsk State University (National Research University); Center for Collective Use, Siberian Ring Source of Photons (SKIF)

Email: kiossarin@mail.ru
Ресей, Novosibirsk; Koltsovo

A. Vorob’ev

Novosibirsk State University (National Research University); Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Ресей, Novosibirsk; Novosibirsk

Әдебиет тізімі

  1. Li X., Xie Y., Li Z. // Chem. Asian J. 2021. V. 16. № 19. P. 2817.
  2. Yersin H. // Top. Curr. Chem. 2004. V. 241. P. 1.
  3. Czerwieniec R., Leitl M. J., Homeieret H. H.H. et al. // Coord. Chem. Rev. 2016. V. 325. P. 2.
  4. Yersin H., Rausch A. F., Czerwieniec R. et al. // Coord. Chem. Rev. 2011. V. 255. № 21–22. P. 2622.
  5. Li T.Y., Zheng S. J., Djurovich P. I. et al. // Chem. Rev. 2024. V. 124. P. 4332.
  6. Alsaeedi M. S. Current Topics and Emerging Issues in Chemical Science. Morocco: Faculty of Sciences, Sidi Mohamed Ben Abdellah University. V. 1. 2023. P. 104.
  7. Ma D. and Duan L. // Chem. Rec. 2019. V. 19. № 8. P. 1483.
  8. Hu Y.X., Xia X., He W. Z. et al. // Org. Electron. 2019. V. 66. P. 126.
  9. Li T.Y., Wu J., Wu Z. G. et al. // Coord. Chem. Rev. 2018. V. 374. P. 55.
  10. Monkman A. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 20463.
  11. Tanimoto S., Suzuki T., Nakanotani H. et al. // Chem Lett. 2016. V. 45. № 7. P. 770.
  12. Bergmann L., Zink D. M., Bräse S. et al. // Top. Curr. Chem. 2016. V. 374. № 3. Art 22.
  13. Patil V.V., Hong W. P., Lee J. Y. // Adv. Energy Mater. 2024. Р. 2400258.
  14. Yuan L., Zhang Y. P., Zheng Y. X. // Sci. China Chem. 2024. V. 67 № 4. P. 1097.
  15. Dumur F. // Org. Electronics. 2015. V. 21. P. 27.
  16. Sandoval-Pauker C., Santander-Nelli M., Dreyse P. // RSC Adv. 2022. V. 12. № 17. P. 10653.
  17. Mcmillin D.R., Mcnett K. M. // Chem. Rev. 1998. V. 98. № 3. P. 1201.
  18. Leoni E., Mohanraj J., Holler M. et al. // Inorg. Chem. 2018. V. 57. № 24. P. 15537.
  19. Holler M., Delavaux-Nicot B., Nierengarten J.F. // Chem. Eur. J. 2019. V. 25. № 18. P. 4543.
  20. Armaroli N. // Chem Soc. Rev. 2001. V. 30. № 2. P. 113.
  21. Lavie-Cambot A., Cantuel M., Leydet Y. et al. // Coord. Chem. Rev. 2008. V. 252. № 23–24. P. 2572.
  22. Accorsi G., Listorti A., Yoosaf K. et al. // Chem Soc Rev. 2009. Vol. 38, № 6. P. 1690.
  23. Miao H., Wang P., Huang Z. et al. // Struct. Chem. 2023.V. 34. № 6. Р. 2307.
  24. Zhang X., Wu Z., Xu J. Y. et al. // Polyhedron. 2021. V. 202. P. 115197.
  25. Toigo J., Farias G., Salla C. A.M. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 31. P. 3177.
  26. Li C., MacKenzie C.F.R., Said S.A. et al. // Inorg. Chem. 2021. V. 60. № 14. P. 10323.
  27. Jin X.X., Li T., Shi D. P. et al. // New J. Chem. 2020. V. 44. № 31. P. 13393.
  28. Sannikova V.A., Filippov I. R., Karmatskikh O. Y. et al. // Chem. Heterocycl. Compd. 2020. V. 56. № 8. P. 1042.
  29. Malakhova J.A., Berezin A. S., Glebov E. M. et al. // Inorg. Chim. Acta. 2023. V. 555. P. 121604.
  30. Fadeeva V.P., Tikhova V.D., Nikulicheva O.N. // J. Analyt. Chem. 2008. V. 63. № 11. P. 1094.
  31. APEX2 (version 1.08), SAINT (version 7.03), and SADABS (version 2.11). Bruker AXS Inc., 2004.
  32. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
  33. Cuttell D.G., Kuang S.M., Fanwick P.E. et al. // J. Am. Chem. Soc. 2002. V. 124. № 1. P. 6.
  34. Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. № 9. P. 955.
  35. Allen F.H., Kennard O., Watson D.G. // Perkin Trans. 1987. № 12. P. S1.
  36. Zheng D., Tong Q. // Russ. J. Phys. Chem. A. 023. V. 97. № 13. P. 2942.
  37. Kuang X.N., Lin S., Liu J.M. et al. // Polyhedron. 2019. V. 165. P. 51.
  38. Wang Y.P., Hu X.H., Wang Y.F. et al. // Polyhedron. 2015. V. 102. P. 782.
  39. Si Z., Li X., Li X. et al. // Inorg. Chem. Commun. 2009. V. 12. № 10. P. 1016.
  40. Smith C.S., Branham C.W., Marquardt B.J. et al. // J. Am. Chem. Soc. 2010. V. 132. № 40. P. 14079.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Sch. 1: Synthesis scheme of pyrazolo[1,5-a][1,10]phenanthroline derivatives [28].

Жүктеу (170KB)
3. Sch. 2. Scheme for the synthesis of heteroleptic copper(I) complexes.

Жүктеу (162KB)
4. Fig. 1. Structure of the complex cation [CuL1(POP)]+ in I, depicted as ellipsoids (50% probability), with atoms numbered. Hydrogen atoms have been omitted for clarity.

Жүктеу (606KB)
5. Fig. 2. Structure of the complex cation [CuL2(POP)]+ in II, depicted as ellipsoids (50% probability), with atoms numbered. Hydrogen atoms have been omitted for clarity.

Жүктеу (517KB)
6. Fig. 3. Structure of the complex cation [CuL3(POP)]+ in III - Et2O, depicted as ellipsoids (50% probability), with atoms numbered. Hydrogen atoms have been omitted for clarity.

Жүктеу (470KB)
7. Fig. 4. FL spectra of compound L3 in CH2Cl2 (a) and in the solid state (b).

Жүктеу (333KB)
8. Fig. 5. PL spectra of complex I in CH2Cl2 (a) and in the solid state (b).

Жүктеу (303KB)
9. Fig. 6. PL spectra of complex II in CH2Cl2 (a) and in the solid state (b).

Жүктеу (303KB)
10. Fig. 7. PL spectra of complex III in CH2Cl2 (a) and in the solid state (b).

Жүктеу (317KB)

© Российская академия наук, 2024