On the Interaction of Copper(II) Complexes Cu(Gly)₂⁰, Cu(Bipy)Gly⁺, and Cu(Bipy)₂²⁺ with Glutathione

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The interaction of three copper(II) complexes — Cu(Gly)₂⁰, Cu(Bipy)₂²⁺, and Cu(Bipy)Gly⁺ — with glutathione in aqueous solution (pH 7.4, 0.2 M NaCl, 25°C, сCu = (1–10) × 10–4, сGSH = 1.0 × 10–3 M) was studied. These and similar complexes are often used in biological experiments to test anticancer and antimicrobial activity. It was shown that under physiological conditions copper(II) complexes are almost irreversibly converted into a more stable form of copper(I) thiolate complexes. The individuality of the initial complexes is completely lost. In all cases, the redox interaction of the copper(II) complexes with glutathione was rapid and quantitative. The main products were copper(I) bisthiolate complex and glutathione disulfide.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Mironov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: imir@niic.nsc.ru
Ресей, Novosibirsk

V. Kharlamova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: imir@niic.nsc.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Freedman J.H., Ciriolo M.R., Peisach J. // J. Biol. Chem. 1989. V. 264. № 10. P. 5598.
  2. Кошенскова К.А., Баравиков Д.Е., Нелюбина Ю.В. и др. // Коорд. химия. 2023. Т. 49. № 10. С. 632. https://doi.org/10.31857/S0132344X23600212 (Koshenskova K.A., Baravikov D.E., Nelyubina Yu.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 10. P. 660) https://doi.org/10.1134/S1070328423600730
  3. Śliwa E.I., Śliwińska-Hill U., Bażanów B. et al. // Molecules. 2020. V. 25. № 3. P. 741.
  4. Ruiz-Azuara L., Bravo-Gómez M.E. // Curr. Med. Chem. 2010. V. 17. P. 3606.
  5. Eremina J.A., Lider E.V., Kuratieva N.V. et al. // Inorg. Chim. Acta. 2021. V. 516. Art. 120169.
  6. Shakirova O.G., Morozova T.D., Kudyakova Y.S. et al. // Int. J. Mol. Sci. 2024. V. 25. P. 9414.
  7. Eremina J.A., Smirnova K.S., Klyushova L.S. et al. // J. Mol. Struct. 2021. V. 1245. Art. 131024.
  8. Speisky H., Gómez M., Carrasco-Pozo C. et al. // Bioorg. Med. Chem. 2008. V. 16. P. 6568.
  9. Galindo-Murillo R., García-Ramos J.C., Ruiz-Azuara L. et al. // Nucleic Acids Res. 2015. V. 43. № 11. P. 5364.
  10. Casini A., Kelter G., Gabbiani C. et al. // J. Biol. Inorg. Chem. 2009. V. 14. P. 1139.
  11. Gorini G., Magherini F., Fiaschi T. et al. // Biomedicines. 2021. V. 9. P. 871.
  12. Fernandez-Moreira V., Herrera R.P., Gimeno M.C. // Pure. Appl. Chem. 2018. V. 91. P. 247.
  13. Mironov I.V., Kharlamova V.Yu. // ChemistrySelect. 2023. V. 8. Art. e202301337.
  14. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1495. https://doi.org/10.31857/S0044457X23600639 (Mironov I.V., Kharlamova V.Yu. // Russ. J. Inorg. Chem. 2023. V. 68. № 10. P. 1487). https://doi.org/10.1134/S003602362360185X
  15. Crmarić D., Bura-Nakić E. // Molecules. 2023. V. 28. P. 5065.
  16. Rigo A., Corazza A., di Paolo M.L. et al. // J. Inorg. Biochem. 2004. V. 98. P. 1495.
  17. Smith R.C., Reed V.D., Hill W.E. // Phosphorus, Sulfur, Silicon Relat. Elem. 1994. V. 90. P. 147.
  18. Карякин Ю.В., Ангелов И.И. Чистые химические вещества. М.: Химия, 1974. С. 235.
  19. Bratsch S.G. // J. Phys. Chem. Ref. Data. 1989. V. 18. № 1. P. 1.
  20. Jocelyn P.C. // Eur. J. Biochem. 1967. V. 2. P. 327.
  21. Walsh M.J., Ahner B.A. // J. Inorg. Biochem. 2013. V. 128. P. 112.
  22. Österberg R., Ligaarden R., Persson D. // J. Inorg. Biochem. 1979. V. 10. P. 341.
  23. Königsberger L.-C., Königsberger E., Hefter G. et al. // Dalton Trans. 2015. V. 44. P. 20413.
  24. Perrin D.D. Stability сonstants of metal-ion complexes. Pt B: Organic ligands. New York: Pergamon Press, 1979. 1263 p.
  25. Speisky H., Gómez M., Burgos-Bravo F. et al. // Bioorg. Med. Chem. 2009. V. 17. P. 1803.
  26. Ngamchuea K., Batchelor-McAuley C., Compton R.G. // Chem. Eur. J. 2016. V. 22. № 44. P. 15937.
  27. Drochioiu G., Ion L., Ciobanu C. et al. // Eur. J. Mass Spectrom. 2013. V. 19. P. 71.
  28. Aliaga M.E., López-Alarcón C., Bridi R. et al. // J. Inorg. Biochem. 2016. V. 154. P. 78.
  29. Багиян Г.А., Королева И.К., Сорока Н.В. и др. // Кинетика и катализ. 2004. Т. 45. № 3. С. 398 (Bagiyan G.A., Koroleva I.K., Soroka N.V. et al. // Kinet. Catal. 2004. V. 45. № 3. P. 372). https://doi.org/10.1023/B:KICA.0000032171.81652.91
  30. Mejia C., Ruiz-Azuara L. // Pathol. Oncol. Res. 2008. V. 14. P. 467.
  31. Griesser R., Sigel H. // Inorg. Chem. V. 9. № 5. P. 1238.
  32. Raydan D., Rivas-Lacre I.J., Lubes V. et al. // J. Mol. Liq. 2020. V. 302. Art. 112595.
  33. Seko H., Tsuge K., Igashira-Kamiyama A. et al. // Chem. Commun. 2010. V. 46. P. 1962.
  34. Huang R., Wallqvist A., Covell D.G. // Biochem. Pharmacol. 2005. V. 69. P. 1009.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. UV spectra of solutions containing Cu(I) + GSH. cCu = 1.50 × 10⁻⁴ M, cGSH (10⁻⁴ M): 1.86 (1), 2.04 (2), 2.21 (3), 2.53 (4), 2.83 (5), 4.13 (6), 5.58 (7), 7.01 (8), 8.42 (9), 9.81 (10). pH 7.4, 0.2 M NaCl, l = 1 cm.

Жүктеу (163KB)
3. Fig. 2. UV spectra of solutions containing Cu(II) + Gly + GS*; cCu = 1.0 × 10⁻⁴ M, pH 7.4, 0.2 M NaCl, l = 1 cm, cGly = 4.21 × 10⁻⁴ M, without buffer (1); cGly = 4.0 × 10⁻⁴ M (2); cGly = 3.81 × 10⁻⁴ M, cGS* = 1.0 × 10⁻³ M (3); cGly = 4.0 × 10⁻³ M (4); cGly = 3.8 × 10⁻³ M, cGS* = 1.0 × 10⁻³ M (5); сGly = 4.0 × 10⁻² M (6); cGly = 3.9 × 10⁻² M, cGS* = 1.0 × 10⁻³ M (7); сGly = 1.0 × 10⁻³ M (without Cu2+, GS*, NaCl) (8).

Жүктеу (153KB)
4. Scheme 1.

Жүктеу (27KB)
5. Fig. 3. UV spectra of the forms. Initial complex Cu(Bipy)₂²⁺ (3.77 × 10⁻⁵ M) (1); solution after addition of GS* (1.0 × 10⁻³ M), time after mixing τ ≈ 6 s; symbols (∆) — calculation (2); Bipy (1.0 × 10⁻⁴ M) (3); Cu(GS)2* (4.75 × 10⁻⁵ M) (4); GS* (1.00 × 10⁻³ M) (5); GSSG* (1.0 × 10⁻⁴ M) (6). pH 7.4, 0.2 M NaCl, l = 1 cm.

Жүктеу (164KB)
6. Fig. 4. UV spectra of solutions: Cu(Bipy)Gly+ (5.0 × 10⁻⁵ M) (1); after addition of GS* (1.0 × 10⁻³ M), τ = 6 s–5 min (2); KNO₃ (2.5 × 10⁻⁴ M) (3). pH 7.4, 0.2 M NaCl, l = 1 cm.

Жүктеу (132KB)
7. Fig. 5. Changes in the UV spectra of Cu(Bipy)Gly⁺ solution after reduction: τ = 6 s (1); 2–6 — experimental spectra of the solution after 10, 20, 30, 50, 80 min, respectively; 2'–6' — spectrum of the new form for the same time intervals. withCu = 5.0 × 10⁻⁵ M, pH 7.4, 0.2 M NaCl, l = 1 cm.

Жүктеу (208KB)

© Российская академия наук, 2025