On the Interaction of Copper(II) Complexes Cu(Gly)₂⁰, Cu(Bipy)Gly⁺, and Cu(Bipy)₂²⁺ with Glutathione

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The interaction of three copper(II) complexes — Cu(Gly)₂⁰, Cu(Bipy)₂²⁺, and Cu(Bipy)Gly⁺ — with glutathione in aqueous solution (pH 7.4, 0.2 M NaCl, 25°C, сCu = (1–10) × 10–4, сGSH = 1.0 × 10–3 M) was studied. These and similar complexes are often used in biological experiments to test anticancer and antimicrobial activity. It was shown that under physiological conditions copper(II) complexes are almost irreversibly converted into a more stable form of copper(I) thiolate complexes. The individuality of the initial complexes is completely lost. In all cases, the redox interaction of the copper(II) complexes with glutathione was rapid and quantitative. The main products were copper(I) bisthiolate complex and glutathione disulfide.

全文:

受限制的访问

作者简介

I. Mironov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: imir@niic.nsc.ru
俄罗斯联邦, Novosibirsk

V. Kharlamova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: imir@niic.nsc.ru
俄罗斯联邦, Novosibirsk

参考

  1. Freedman J.H., Ciriolo M.R., Peisach J. // J. Biol. Chem. 1989. V. 264. № 10. P. 5598.
  2. Кошенскова К.А., Баравиков Д.Е., Нелюбина Ю.В. и др. // Коорд. химия. 2023. Т. 49. № 10. С. 632. https://doi.org/10.31857/S0132344X23600212 (Koshenskova K.A., Baravikov D.E., Nelyubina Yu.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 10. P. 660) https://doi.org/10.1134/S1070328423600730
  3. Śliwa E.I., Śliwińska-Hill U., Bażanów B. et al. // Molecules. 2020. V. 25. № 3. P. 741.
  4. Ruiz-Azuara L., Bravo-Gómez M.E. // Curr. Med. Chem. 2010. V. 17. P. 3606.
  5. Eremina J.A., Lider E.V., Kuratieva N.V. et al. // Inorg. Chim. Acta. 2021. V. 516. Art. 120169.
  6. Shakirova O.G., Morozova T.D., Kudyakova Y.S. et al. // Int. J. Mol. Sci. 2024. V. 25. P. 9414.
  7. Eremina J.A., Smirnova K.S., Klyushova L.S. et al. // J. Mol. Struct. 2021. V. 1245. Art. 131024.
  8. Speisky H., Gómez M., Carrasco-Pozo C. et al. // Bioorg. Med. Chem. 2008. V. 16. P. 6568.
  9. Galindo-Murillo R., García-Ramos J.C., Ruiz-Azuara L. et al. // Nucleic Acids Res. 2015. V. 43. № 11. P. 5364.
  10. Casini A., Kelter G., Gabbiani C. et al. // J. Biol. Inorg. Chem. 2009. V. 14. P. 1139.
  11. Gorini G., Magherini F., Fiaschi T. et al. // Biomedicines. 2021. V. 9. P. 871.
  12. Fernandez-Moreira V., Herrera R.P., Gimeno M.C. // Pure. Appl. Chem. 2018. V. 91. P. 247.
  13. Mironov I.V., Kharlamova V.Yu. // ChemistrySelect. 2023. V. 8. Art. e202301337.
  14. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1495. https://doi.org/10.31857/S0044457X23600639 (Mironov I.V., Kharlamova V.Yu. // Russ. J. Inorg. Chem. 2023. V. 68. № 10. P. 1487). https://doi.org/10.1134/S003602362360185X
  15. Crmarić D., Bura-Nakić E. // Molecules. 2023. V. 28. P. 5065.
  16. Rigo A., Corazza A., di Paolo M.L. et al. // J. Inorg. Biochem. 2004. V. 98. P. 1495.
  17. Smith R.C., Reed V.D., Hill W.E. // Phosphorus, Sulfur, Silicon Relat. Elem. 1994. V. 90. P. 147.
  18. Карякин Ю.В., Ангелов И.И. Чистые химические вещества. М.: Химия, 1974. С. 235.
  19. Bratsch S.G. // J. Phys. Chem. Ref. Data. 1989. V. 18. № 1. P. 1.
  20. Jocelyn P.C. // Eur. J. Biochem. 1967. V. 2. P. 327.
  21. Walsh M.J., Ahner B.A. // J. Inorg. Biochem. 2013. V. 128. P. 112.
  22. Österberg R., Ligaarden R., Persson D. // J. Inorg. Biochem. 1979. V. 10. P. 341.
  23. Königsberger L.-C., Königsberger E., Hefter G. et al. // Dalton Trans. 2015. V. 44. P. 20413.
  24. Perrin D.D. Stability сonstants of metal-ion complexes. Pt B: Organic ligands. New York: Pergamon Press, 1979. 1263 p.
  25. Speisky H., Gómez M., Burgos-Bravo F. et al. // Bioorg. Med. Chem. 2009. V. 17. P. 1803.
  26. Ngamchuea K., Batchelor-McAuley C., Compton R.G. // Chem. Eur. J. 2016. V. 22. № 44. P. 15937.
  27. Drochioiu G., Ion L., Ciobanu C. et al. // Eur. J. Mass Spectrom. 2013. V. 19. P. 71.
  28. Aliaga M.E., López-Alarcón C., Bridi R. et al. // J. Inorg. Biochem. 2016. V. 154. P. 78.
  29. Багиян Г.А., Королева И.К., Сорока Н.В. и др. // Кинетика и катализ. 2004. Т. 45. № 3. С. 398 (Bagiyan G.A., Koroleva I.K., Soroka N.V. et al. // Kinet. Catal. 2004. V. 45. № 3. P. 372). https://doi.org/10.1023/B:KICA.0000032171.81652.91
  30. Mejia C., Ruiz-Azuara L. // Pathol. Oncol. Res. 2008. V. 14. P. 467.
  31. Griesser R., Sigel H. // Inorg. Chem. V. 9. № 5. P. 1238.
  32. Raydan D., Rivas-Lacre I.J., Lubes V. et al. // J. Mol. Liq. 2020. V. 302. Art. 112595.
  33. Seko H., Tsuge K., Igashira-Kamiyama A. et al. // Chem. Commun. 2010. V. 46. P. 1962.
  34. Huang R., Wallqvist A., Covell D.G. // Biochem. Pharmacol. 2005. V. 69. P. 1009.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. UV spectra of solutions containing Cu(I) + GSH. cCu = 1.50 × 10⁻⁴ M, cGSH (10⁻⁴ M): 1.86 (1), 2.04 (2), 2.21 (3), 2.53 (4), 2.83 (5), 4.13 (6), 5.58 (7), 7.01 (8), 8.42 (9), 9.81 (10). pH 7.4, 0.2 M NaCl, l = 1 cm.

下载 (163KB)
3. Fig. 2. UV spectra of solutions containing Cu(II) + Gly + GS*; cCu = 1.0 × 10⁻⁴ M, pH 7.4, 0.2 M NaCl, l = 1 cm, cGly = 4.21 × 10⁻⁴ M, without buffer (1); cGly = 4.0 × 10⁻⁴ M (2); cGly = 3.81 × 10⁻⁴ M, cGS* = 1.0 × 10⁻³ M (3); cGly = 4.0 × 10⁻³ M (4); cGly = 3.8 × 10⁻³ M, cGS* = 1.0 × 10⁻³ M (5); сGly = 4.0 × 10⁻² M (6); cGly = 3.9 × 10⁻² M, cGS* = 1.0 × 10⁻³ M (7); сGly = 1.0 × 10⁻³ M (without Cu2+, GS*, NaCl) (8).

下载 (153KB)
4. Scheme 1.

下载 (27KB)
5. Fig. 3. UV spectra of the forms. Initial complex Cu(Bipy)₂²⁺ (3.77 × 10⁻⁵ M) (1); solution after addition of GS* (1.0 × 10⁻³ M), time after mixing τ ≈ 6 s; symbols (∆) — calculation (2); Bipy (1.0 × 10⁻⁴ M) (3); Cu(GS)2* (4.75 × 10⁻⁵ M) (4); GS* (1.00 × 10⁻³ M) (5); GSSG* (1.0 × 10⁻⁴ M) (6). pH 7.4, 0.2 M NaCl, l = 1 cm.

下载 (164KB)
6. Fig. 4. UV spectra of solutions: Cu(Bipy)Gly+ (5.0 × 10⁻⁵ M) (1); after addition of GS* (1.0 × 10⁻³ M), τ = 6 s–5 min (2); KNO₃ (2.5 × 10⁻⁴ M) (3). pH 7.4, 0.2 M NaCl, l = 1 cm.

下载 (132KB)
7. Fig. 5. Changes in the UV spectra of Cu(Bipy)Gly⁺ solution after reduction: τ = 6 s (1); 2–6 — experimental spectra of the solution after 10, 20, 30, 50, 80 min, respectively; 2'–6' — spectrum of the new form for the same time intervals. withCu = 5.0 × 10⁻⁵ M, pH 7.4, 0.2 M NaCl, l = 1 cm.

下载 (208KB)

版权所有 © Российская академия наук, 2025