Bicompatible Metal-Organic Framework for Functional Packing of Food Products

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Biocompatible metal-organic framework [Zn4(GA)4(H2O)4]·4H2O (H2GA is glutamic acid) is tested as a “container” with bioactive hydrophobic components of jasmine essential oil for the preparation of functional composite materials based on a hydrocolloid matrix containing kappa-carrageenan and hydroxypropyl methylcellulose. The prepared composite film coatings exhibit high antimicrobial and antioxidant activities in the model experiment with a long-term storage of fruits, which indicates broad prospects for the practical use of these materials as an active packing of food products.

作者简介

A. Pak

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia;
Moscow Institute of Physics and Technology (National Research University), Moscow, Russia

Email: novikov84@ineos.ac.ru
Россия, Москва; Россия, Москва

E. Zakharchenko

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia;
Moscow Institute of Physics and Technology (National Research University), Moscow, Russia

Email: novikov84@ineos.ac.ru
Россия, Москва; Россия, Москва

E. Maiorova

Moscow Institute of Physics and Technology (National Research University), Moscow, Russia

Email: novikov84@ineos.ac.ru
Россия, Москва

V. Novikov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia;
Moscow Institute of Physics and Technology (National Research University), Moscow, Russia;
Bauman Moscow State Technical University, Moscow, Russia

编辑信件的主要联系方式.
Email: novikov84@ineos.ac.ru
Россия, Москва; Россия, Москва; Россия, Москва

参考

  1. Ozdemir M., Floros J.D. // Crit. Rev. Food Sci. 2004. V. 44. № 3. P. 185.
  2. Yildirim S., Röcker B., Pettersen M.K. et al. // Compr. Rev. Food Sci. Food Saf. 2018. V. 17. № 1. P. 165.
  3. Siracusa V., Rocculi P., Romani S. et al. // Trends Food Sci. Technol. 2008. V. 19. № 12. P. 634643.
  4. Dickinson E. // Food Hydrocoll. 2009. V. 23. № 6. P. 1473.
  5. Saha D., Bhattacharya S. // J. Food Sci. Technol. 2010. V. 47. № 6. P. 587.
  6. Krempel M., Griffin K., Khouryieh H. // Preservatives and Preservation Approaches in Beverages / Ed. Grumezescu A.M., Holban A.M. Academic Press, 2019. P. 427465.
  7. Vries J. de // Conf. “CoGums and Stabilisers for the Food Industry – 12”. 2004. P. 2331.
  8. Jiménez A., Requena R., Vargas M. et al. // Role Mater. Sci. Food Bioengineering / Ed. Grumezescu A.M., Holban A.M. Academic Press, 2018. P. 263299.
  9. Carpena M., Nuñez-Estevez B., Soria-Lopez A. et al. // Resources. 2021. V. 10. № 1. P. 7.
  10. Sharma S., Barkauskaite S., Jaiswal A.K. et al. // Food Chem. 2021. V. 343. P. 128403.
  11. Kykkidou S., Giatrakou V., Papavergou A. et al. // Food Chem. 2009. V. 115. № 1. P. 169.
  12. Ayala-Zavala J.F., Silva-Espinoza B.A., Cruz-Valenzuela M.R. et al. // Flavour Fragr. J. 2013. V. 28. № 1. P. 39.
  13. Chouhan S., Sharma K., Guleria S. // Medicines. 2017. V. 4. № 3. P. 58.
  14. Torres-Martínez R., García-Rodríguez Y.M., Ríos-Chávez P. et al. // Phcog. Mag. 2017. V. 13. Suppl. 4. P. S875.
  15. Angelini P., Tirillini B., Akhtar M.S. et al. // Anticancer Plants: Natural Products and Biotechnological Implements. V. 2 / Ed. Akhtar M.S., Swamy M.K. Singapore: Springer, 2018. P. 207.
  16. Sánchez-González L., Chiralt A., González-Martínez C. et al. // J. Food Eng. 2011. V. 105. № 2. P. 246.
  17. Perdones Á., Vargas M., Atarés L. et al. // Food Hydrocoll. 2014. V. 36. P. 256.
  18. Acosta S., Chiralt A., Santamarina P. et al. // Food Hydrocoll. 2016. V. 61. P. 233.
  19. Zhao J., Wei F., Xu W. et al. // Appl. Surf. Sci. 2020. V. 510. P. 145418.
  20. Eddaoudi M., Li H., Yaghi O.M. // J. Am. Chem. Soc., 2000. V. 122. № 7. P. 1391.
  21. Huang L., Wang H., Chen J. et al. // Microporous Mesoporous Mater. 2003. V. 58. № 2. P. 105.
  22. McKinlay A.C., Morris R.E., Horcajada P. et al. // Angew. Chem. Int. Ed. 2010. V. 49. № 36. P. 6260.
  23. Li J.-R., Sculley J., Zhou H.-C. // Chem. Rev. 2012. V. 112. № 2. P. 869.
  24. Dybtsev D.N., Nuzhdin A.L., Chun H. et al. // Angew. Chem. 2006. V. 118. № 6. P. 930.
  25. Horcajada P., Chalati T., Serre C. et al. // Nat. Mater. 2010. V. 9. № 2. P. 172.
  26. Wang H.-S. // Coord. Chem. Rev. 2017. V. 349. P. 139155.
  27. Horcajada P., Gref R., Baati T. et al. // Chem. Rev. 2012. V. 112. № 2. P. 1232.
  28. Tibbetts I., Kostakis G.E. // Molecules. 2020. V. 25. № 6. P. 1291.
  29. Miller S.R., Heurtaux D., Baati T. et al. // Chem. Commun. 2010. V. 46. № 25. P. 4526.
  30. Schneemann A., Bon V., Schwedler I. et al. // Chem. Soc. Rev. 2014. V. 43. № 16. P. 6062.
  31. Lin W., Cui Y., Yang Y. et al. // Dalton Trans. 2018. V. 47. № 44. P. 15882.
  32. Noorian S.A., Hemmatinejad N., Navarro J.A.R. // J. Inorg. Biochem. 2019. V. 201. P. 110818.
  33. Kathalikkattil A.C., Roshan R., Tharun J. et al. // Chem. Commun. 2016. V. 52. № 2. P. 280.
  34. McHugh T.H., Avena-Bustillos R., Krochta J.M. // J. Food Sci. 1993. V. 58. № 4. P. 899.
  35. Pak A.M., Zakharchenko E.N., Korlyukov A.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 195.
  36. Cherrington R., Liang J. Materials and Deposition Processes for Multifunctionality. Oxford: William Andrew Publishing, 2016.
  37. Rhein-Knudsen N., Ale M.T., Meyer A.S. // Mar. Drugs. 2015. V. 13. № 6. P. 3340.
  38. Riduan S.N., Zhang Y. // Chem. Asian J. 2021. V. 16. № 18. P. 2588.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (105KB)
3.

下载 (4MB)
4.

下载 (215KB)
5.

下载 (1MB)

版权所有 © А.М. Пак, Е.Н. Захарченко, Е.А. Майорова, В.В. Новиков, 2023