Trimethylammonium dichloro-hexachlorotellurate(IV): crystal structure and features of non-covalent interactions of Cl···Cl

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

By the reaction of tellurium(IV) oxide with trimethylammonium chloride in the presence of chlorine gas in concentrated hydrochloric acid, supramolecular dichloro-hexachlorotellurate (Me3NH)2{[TeCl6](Cl2)} (I) was obtained, the structure of which was determined by X-ray diffraction. Based on elemental and X-ray phase analysis data, a conclusion was made about the limited stability of the resulting compound. The features of non-covalent Cl···Cl interactions in the crystal structure of this compound were studied by Raman spectroscopy (Raman).

作者简介

A. Usoltsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: usoltsev@niic.nsc.ru
Россия, Новосибирск

A. Sonina

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: usoltsev@niic.nsc.ru
Россия, Новосибирск

N. Korobeinikov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia

Email: usoltsev@niic.nsc.ru
Россия, Новосибирск; Россия, Новосибирск

S. Adonin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia;Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

编辑信件的主要联系方式.
Email: adonin@niic.nsc.ru
Россия, Новосибирск; Россия, Новосибирск

参考

  1. Pelletier J., Caventou J. // Ann Chim Phys. 1819. V. 10. P. 142.
  2. Yushina I., Tarasova N., Kim D. et al. // Crystals. 2019. V. 9. № 10. P. 506.
  3. Bol’shakov O.I., Yushina I.D., Stash A.I. et al. // Struct. Chem. 2020. V. 31. № 5. P. 1729.
  4. Reiss G.J., Leske P.B. // Z. Krist. – New Cryst. Struct. 2014. V. 229. № 4. P. 452.
  5. Reiss G.J. // Z. Krist. – New Cryst. Struct. 2019. V. 234. № 4. P. 737.
  6. Reiss G.J. // Z. Naturforsch. B. 2015. V. 70. № 10. P. 735.
  7. Sonnenberg K., Mann L., Redeker F.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 14. P. 5464.
  8. Haller H., Riedel S. // Z. Anorg. Allg. Chem. 2014. V. 640. № 7. P. 1281.
  9. Savinkina E.V., Golubev D.V., Grigoriev M.S. // J. Coord. Chem. 2019. V. 72. № 2. P. 347.
  10. Shestimerova T.A., Bykov A.V., Kuznetsov A.N. et al. // Z. Anorg. Allg. Chem. 2022. V. 648. № 15.
  11. Shestimerova T.A., Golubev N.A., Bykov M.A. et al. // Molecules. 2021. V. 26. № 18.
  12. Калле П., Беззубов С.И. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1561 (Kalle P., Bezzubov S.I. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1682). https://doi.org/10.1134/S0036023621110103
  13. Shestimerova T.A., Bykov M.A., Wei Z. et al. // Russ. Chem. Bull. 2019. V. 68. № 8. P. 1520.
  14. Brückner R., Haller H., Ellwanger M., Riedel S. // Chem. – A Eur. J. 2012. V. 18. № 18. P. 5741.
  15. Brückner R., Haller H., Steinhauer S. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 51. P. 15579.
  16. Brückner R., Pröhm P., Wiesner A. et al. // Angew. Chem. Int. Ed. 2016. V. 55. № 36. P. 10904.
  17. Sonnenberg K., Pröhm P., Schwarze N. et al. // Angew. Chem. Int. Ed. 2018. V. 57. № 29. P. 9136.
  18. Voßnacker P., Keilhack T., Schwarze N. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 11. P. 1034.
  19. Фатеев С.А., Хрусталев В.Н., Симонова А.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 945 (Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997). https://doi.org/10.1134/S0036023622070087.
  20. Фатеев С.А., Степанов Н.М., Петров А.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 939 (Fateev S.A., Stepanov N.M., Petrov A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 992). https://doi.org/10.1134/S0036023622070075
  21. Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311.
  22. Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. № 7. P. 4077.
  23. Shestimerova T.A., Mironov A.V., Bykov M.A. et al. // Molecules. 2020. V. 25. № 12.
  24. Shestimerova T.A., Golubev N.A., Yelavik N.A. et al. // Cryst. Growth Des. 2018. V. 18. № 4. P. 2572.
  25. Desiraju G.R., Shing Ho P., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711.
  26. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton. Trans. 2020. V. 49. № 2. P. 356.
  27. Eliseeva A.A., Ivanov D.M., Novikov A.S., Kukushkin V.Yu. // CrystEngComm. 2019. V. 21. № 4. P. 616.
  28. Dabranskaya U., Ivanov D.M., Novikov A.S. et al. // Cryst. Growth Des. 2019. V. 19. № 2. P. 1364.
  29. Storck P., Weiss A. // Zeitschrift Naturforsch. B. 1991. V. 46. № 9. P. 1214.
  30. Usoltsev A.N., Adonin S.A., Kolesov B.A. et al. // Chem. – A Eur. J. 2020. V. 26. № 61. P. 13776.
  31. Usoltsev A.N., Korobeynikov N.A., Kolesov B.A. et al. // Inorg. Chem. 2021. V. 60. № 6. P. 4171.
  32. Korobeynikov N.A., Usoltsev A.N., Kolesov B.A. et al. // CrystEngComm. 2022. V. 24. № 17. P. 3150.
  33. Usoltsev A.N., Korobeynikov N.A., Kolesov B.A. et al. // Chem. – A Eur. J. 2021. V. 27. № 36. P. 9292.
  34. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
  35. Ben Ghozlen M.H., Bats J.W. // Acta Crystallogr. B. 1982. V. 38. № 4. P. 1308.
  36. Bondi A. // J. Phys. Chem. 1966. V. 70. № 9. P. 3006.
  37. Mantina M., Chamberlin A.C.,Valero R. et al. // J. Phys. Chem. 2009. V. 113. № 19. P. 5806.
  38. Usoltsev A.N., Adonin S.A., Abramov P.A. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 27. P. 3264.
  39. Anderson A., Sun T.S. // Chem. Phys. Lett. 1970. V. 6. № 6. P. 611.
  40. Baker L.-J., Rickard C.E.F., Taylor M.J. // Polyhedron. 1995. V. 14. № 3. P. 401.
  41. Hendra P.J., Jovic Z. // J. CHEM. SOC. 1968. V. 209. P. 600.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (56KB)
3.

下载 (313KB)
4.

下载 (128KB)
5.

下载 (77KB)
6.

下载 (38KB)

版权所有 © А.Н. Усольцев, А.А. Сонина, Н.А. Коробейников, С.А. Адонин, 2023