Electrophysical Properties of Binary Carbon Nanocomposites
- 作者: Simbirtseva G.V.1, Babenko S.D.1, Kiryukhin D.P.2, Arbuzov A.A.2
-
隶属关系:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- 期: 卷 42, 编号 1 (2023)
- 页面: 15-21
- 栏目: Электрические и магнитные свойства материалов
- URL: https://medjrf.com/0207-401X/article/view/674909
- DOI: https://doi.org/10.31857/S0207401X23010119
- EDN: https://elibrary.ru/HQYMIW
- ID: 674909
如何引用文章
详细
The electrophysical properties of powders of carbon hybrid nanosized composites are studied depending on the content of single-wall carbon nanotubes (CNTs) and thermally reduced graphite oxide (TRGO). The effect of the bicomponent composition of the hybrid material is studied and the results of measurements of the specific low-frequency electrical conductivity at a frequency of 1 kHz, complex dielectric permittivity, and conductivity at a frequency of 9.8 GHz for the powders given above are presented. The effect of γ-irradiation on the measured characteristics of the powders is revealed. Research is aimed at finding fillers for modern effective composite radio-absorbing materials.
作者简介
G. Simbirtseva
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: sgvural@mail.ru
Россия, Москва
S. Babenko
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: sgvural@mail.ru
Россия, Москва
D. Kiryukhin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
Email: sgvural@mail.ru
Россия, Черноголовка
A. Arbuzov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
编辑信件的主要联系方式.
Email: sgvural@mail.ru
Россия, Черноголовка
参考
- Клименко И.В., Лобанов А.В., Трусова Е.А. и др. // Хим. физика. 2019. Т. 38. № 12. С. 74; https://doi.org/10.1134/S0207401X19120094
- Шаулов А.Ю., Владимиров Л.В., Грачев А.В. и др. // Хим. физика. 2020. Т. 39. № 1. С. 75; https://doi.org/10.31857/S0207401X2001015X
- Арбузов А.А., Володин А.А., Тарасов Б.П. // ЖФХ. 2020. Т. 94. № 5. С. 760; https://doi.org/10.31857/S0044453720050039
- Zhu Y., Li L., Zhang C. et al. // Nat. Commun. 2012. V. 3. Article 1225; https://doi.org/10.1038/ncomms2234
- Палазник О.М., Недорезова П.М., Польщиков С.В. и др. // Высокомолекуляр. соединения. 2019. Сер. Б. Т. 61. № 2. С. 144; https://doi.org/10.1134/S2308113919020086
- Zhang X., Zhao Z., Xu J. et al. // Carbon. 2021. V. 177. P. 216; https://doi.org/10.1016/j.carbon.2021.02.085
- Chen J., Liu B., Yan L. // Results Phys. 2019. V. 14. 102363; https://doi.org/10.1016/j.rinp.2019.102363
- Liu Z., Qian Z., Song J. et al. // Carbon. 2019. V. 149. P. 181;https://doi.org/10.1016/j.carbon.2019.04.037
- Feng J., Dong L., Li X. et al. // Electrochim. Acta. 2019. V. 302. P. 65; https://doi.org/10.1016/j.electacta.2019.02.008
- Li J., Tang J., Yuan J. et al. // Chem. Phys. Lett. 2018. V. 693. P. 60; https://doi.org/10.1016/j.cplett.2017.12.052
- Тарасов Б.П., Арбузов А., Можжухин С.А. и др. // Журн. структур. химии. 2018. Т. 59. № 4. С. 867; https://doi.org/10.26902/JSC20180411
- Laurila T., Sainio S., Caro M.A. // Prog. Mater. Sci. 2017. V. 88. P. 499; https://doi.org/10.1016/j.pmatsci.2017.04.012
- Romano M.S., Li N., Antiohos D. et al. // Adv. Mater. 2013. V. 25. № 45. P. 6602; https://doi.org/10.1002/adma.201301754
- Abdalla I., Elhassan A., Yu J. et al. // Carbon. 2020. V. 157. P. 703; https://doi.org/10.1016/j.carbon.2019.11.004
- Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60; https://doi.org/10.31857/S0207401X20120146
- Zhou E., Xi J., Guo Y. et al. // Carbon. 2018. V. 133. P. 316; https://doi.org/10.1016/j.carbon.2018.03.023
- You B., Wang L., Yao L. et al. // Chem. Commun. 2013. V. 49. № 44. P. 5016; https://doi.org/10.1039/c3cc41949e
- Yuan Z., Xiao X., Li J. et al. // Adv. Sci. 2018. V. 5. № 2. Article 1700626; https://doi.org/10.1002/advs.201700626
- Mittal G., Dhand V., Rhee K.Y. et al. // J. Ind. Eng. Chem. 2015. V. 21. P. 11; https://doi.org/10.1016/j.jiec.2014.03.022
- Lin X., Liu X., Jia J. // Compos. Sci. Technol. 2014. V. 100. P. 166; https://doi.org/10.1016/j.compscitech.2014.06.012
- Арбузов А.А., Мурадян В.Е., Тарасов Б.П. // Изв. АН. Сер. хим. 2013. № 9. С. 1962.
- Ilin E.S., Bezrodny A.E., Predtechenskiy M.R. // TechConnect Briefs 2016. V. 1. Ch. 2 (Adv. Mater.). P. 65.
- Бранд А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Изд-во физ.-мат. лит., 1963.
- Shepherd C., Hadzifejzovic E., Shkal F. et al. // Langmuir. 2016. V. 32. P. 7917; https://doi.org/10.1021/acs.langmuir.6b02013
- Cuenca J.A., Thomas E., Mandal S. et al. // Carbon. 2015. V. 81. P. 174; https://doi.org/10.1016/j.carbon.2014.09.046
- Slocombe D., Porch A., Bustarret E. et al. // Appl. Phys. Lett. 2013. V. 102. № 24. Article 244102; https://doi.org/10.1063/1.4809823
- Hotta M., Hayashi M., Lanagan M.T. et al. // ISIJ Intern. 2011. V. 51. № 11. P. 1766.
- Симбирцева Г.В., Бабенко С.Д., Кирюхин Д.П. // Хим. физика. 2022. Т. 41. № 4. С. 32.
- Song M., Xu P., Song Y. et al. // AIP Adv. 2015. V. 5. № 9. Article 097130; https://doi.org/10.1063/1.4930966
- Пивень Н.П., Симбирцева Г.В., Арбузов А.А. и др. // Химия высоких энергий. 2019. Т. 53. № 6. С. 498; https://doi.org/10.1134/S0023119319060123
