Dependence of the TNT equivalent of an underwater explosion on the content of aluminum hydride in the energy material

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results obtained show that the addition of aluminum (Al) and aluminum hydride (AlH3) to the explosive significantly increases the heat of explosion and the TNT equivalent (TE) of an underwater explosion. The compositions with AlH3 are inferior to the Al-containing counterparts in the heat of explosion. However, the formulations with AlH3 have the advantage in terms of the number of moles of gaseous products. Replacing Al with AlH3 weakly affects the TE in terms of the energy of gas bubble, while the TE in terms of the energy of shock wave is higher for the mixtures with AlH3. The latter is especially noticeable in the case of the explosive with a positive oxygen balance. However, the compositions with AlH3 are inferior to the Al-containing mixtures in the volumetric TE.

全文:

受限制的访问

作者简介

M. Makhov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mmn13makhov@yandex.ru
俄罗斯联邦, Moscow

参考

  1. N. Chernyy, B. A. Naumov, M. V. Berezin, A. I. Levshenkov, and V. P. Sinditskiy, Uspekhi v khimii i khimicheskoy tekhnologii (Mosk.) — Adnvances in Chemistry and Chemical Technology 22(4), 45 (2008).
  2. Ya. M. Paushkin, in Liquid and Solid Chemical Rocket Fuels, Ed. by A. I. Fokin (Nauka, Moscow, 1978) [in Russian].
  3. V. Weiser, N. Eisenreich, A. Koleczko, and E. Roth, Propellants, Explosives, Pyrotech. 32(3), 213 (2007). https://doi.org/10.1002/prep.200700022
  4. Lempert, G. N. Nechiporenko, A. V. Shastin, et al., Khim. Fiz. 22(4), 64 (2003)
  5. Seleznev, A. A., D. A. Kreknin, V. N. Lashkov, et al., Khim. Fiz. 17(1), 76 (1998).
  6. S. G. Andreev, A. V. Babkin, F. A. Baum, et al., Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].
  7. M. N. Makhov, Gorenie Vzryv 14(1), 83 (2021). https://doi.org/10.30826/СЕ21140111
  8. G. Bjarnholt, Propellants, Explosives, Pyrotech. 5, 67 (1980). https://doi.org/10.1002/prep.19800050213
  9. M. N. Makhov, Gorenie Vzryv 15(4), 105 (2022). https://doi.org/10.30826/СЕ22150411
  10. A. V. Dubovik, Russ. J. Phys. Chem. B 15(4), 696 (2021). https://doi.org/10.1134/S1990793121040151
  11. A. V. Dubovik, Russ. J. Phys. Chem. B 16(2), 260 (2022). https://doi.org/10.1134/S1990793122020051
  12. A. V. Dubovik, Russ. J. Phys. Chem. B 17(2), 369 (2023). https://doi.org/10.1134/S1990793123020057
  13. G. M. Nazin, B. L. Korsunskiy, A. I. Kazakov, A. V. Nabatova, and N. G. Samoylenko, J. Phys. Chem. B 17(2), 406 (2023). https://doi.org/10.1134/S1990793123020124
  14. Energy condensed systems, 3rd ed. Ed. by B. P. Zhukov (Yanus-K, Moscow, 2000) [in Russian].
  15. M. N. Makhov, in Proceedings of the 33rd International Annual Conference of ICT (Fraunhofer Inst. Chem. Technol., Pfinztal, 2002), p. 73.
  16. M. N. Makhov, in Proceedings of the 36th International Annual Conference of ICT and 32nd International Pyrotechnics Seminar (Fraunhofer Inst. Chem. Technol., Pfinztal, 2005), p. 122.
  17. M. N. Makhov, Russ. J. Phys. Chem. B 14(5), 821 (2020). https://doi.org/10.1134/S1990793120050085

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Heat of explosion (Q) and the number of moles of gaseous explosion products (N) depending on β mass fraction of Al (solid lines) and AlH3 (dashed lines) in a mixture with octogen. Symbols are experimental values ​​of the heat of explosion of aluminum-containing compositions.

下载 (171KB)
3. Fig. 2. Same as in Fig. 1, but for a composition with the substance BTNEN.

下载 (160KB)
4. Fig. 3. Dependence of the TNT equivalent in shock wave energy on the mass fraction of Al (solid lines) and AlH3 (dashed lines) in a mixture with BTNEN (1) and HMX (2).

下载 (134KB)
5. Fig. 4. Dependence of the volumetric TNT equivalent in shock wave energy on the mass fraction of the additive. The designations are the same as in Fig. 3

下载 (149KB)

版权所有 © Russian Academy of Sciences, 2024