Dependence of the TNT equivalent of an underwater explosion on the content of aluminum hydride in the energy material
- 作者: Makhov M.N.1
-
隶属关系:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- 期: 卷 43, 编号 1 (2024)
- 页面: 79-83
- 栏目: Combustion, explosion and shock waves
- URL: https://medjrf.com/0207-401X/article/view/675001
- DOI: https://doi.org/10.31857/S0207401X24010093
- EDN: https://elibrary.ru/mfxngy
- ID: 675001
如何引用文章
详细
The results obtained show that the addition of aluminum (Al) and aluminum hydride (AlH3) to the explosive significantly increases the heat of explosion and the TNT equivalent (TE) of an underwater explosion. The compositions with AlH3 are inferior to the Al-containing counterparts in the heat of explosion. However, the formulations with AlH3 have the advantage in terms of the number of moles of gaseous products. Replacing Al with AlH3 weakly affects the TE in terms of the energy of gas bubble, while the TE in terms of the energy of shock wave is higher for the mixtures with AlH3. The latter is especially noticeable in the case of the explosive with a positive oxygen balance. However, the compositions with AlH3 are inferior to the Al-containing mixtures in the volumetric TE.
全文:

作者简介
M. Makhov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: mmn13makhov@yandex.ru
俄罗斯联邦, Moscow
参考
- N. Chernyy, B. A. Naumov, M. V. Berezin, A. I. Levshenkov, and V. P. Sinditskiy, Uspekhi v khimii i khimicheskoy tekhnologii (Mosk.) — Adnvances in Chemistry and Chemical Technology 22(4), 45 (2008).
- Ya. M. Paushkin, in Liquid and Solid Chemical Rocket Fuels, Ed. by A. I. Fokin (Nauka, Moscow, 1978) [in Russian].
- V. Weiser, N. Eisenreich, A. Koleczko, and E. Roth, Propellants, Explosives, Pyrotech. 32(3), 213 (2007). https://doi.org/10.1002/prep.200700022
- Lempert, G. N. Nechiporenko, A. V. Shastin, et al., Khim. Fiz. 22(4), 64 (2003)
- Seleznev, A. A., D. A. Kreknin, V. N. Lashkov, et al., Khim. Fiz. 17(1), 76 (1998).
- S. G. Andreev, A. V. Babkin, F. A. Baum, et al., Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].
- M. N. Makhov, Gorenie Vzryv 14(1), 83 (2021). https://doi.org/10.30826/СЕ21140111
- G. Bjarnholt, Propellants, Explosives, Pyrotech. 5, 67 (1980). https://doi.org/10.1002/prep.19800050213
- M. N. Makhov, Gorenie Vzryv 15(4), 105 (2022). https://doi.org/10.30826/СЕ22150411
- A. V. Dubovik, Russ. J. Phys. Chem. B 15(4), 696 (2021). https://doi.org/10.1134/S1990793121040151
- A. V. Dubovik, Russ. J. Phys. Chem. B 16(2), 260 (2022). https://doi.org/10.1134/S1990793122020051
- A. V. Dubovik, Russ. J. Phys. Chem. B 17(2), 369 (2023). https://doi.org/10.1134/S1990793123020057
- G. M. Nazin, B. L. Korsunskiy, A. I. Kazakov, A. V. Nabatova, and N. G. Samoylenko, J. Phys. Chem. B 17(2), 406 (2023). https://doi.org/10.1134/S1990793123020124
- Energy condensed systems, 3rd ed. Ed. by B. P. Zhukov (Yanus-K, Moscow, 2000) [in Russian].
- M. N. Makhov, in Proceedings of the 33rd International Annual Conference of ICT (Fraunhofer Inst. Chem. Technol., Pfinztal, 2002), p. 73.
- M. N. Makhov, in Proceedings of the 36th International Annual Conference of ICT and 32nd International Pyrotechnics Seminar (Fraunhofer Inst. Chem. Technol., Pfinztal, 2005), p. 122.
- M. N. Makhov, Russ. J. Phys. Chem. B 14(5), 821 (2020). https://doi.org/10.1134/S1990793120050085
补充文件
