Orientational isomerism in water clusters (h2o)n = 2–5, corresponding to the complete set of oriented graphs
- Autores: Shirokova E.A.1, Ignatov S.K.1
-
Afiliações:
- Lobachevsky State University of Nizhni Novgorod
- Edição: Volume 43, Nº 10 (2024)
- Páginas: 21-35
- Seção: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://medjrf.com/0207-401X/article/view/680949
- DOI: https://doi.org/10.31857/S0207401X24100028
- ID: 680949
Citar
Resumo
On the basis of quantum-chemical calculation X3LYP/6-311++G(2d, 2p) for orientational isomers of water clusters (H2O)n = 2–5, corresponding to the full set of oriented graphs with the number of vertices from 2 to 5, thermodynamic functions and concentrations of clusters in the gas phase have been determined. It is found that the phenomenon of orientational isomerism of water clusters must be taken into account to correctly estimate the gas-phase concentrations. For the full set of orientational isomers, the concentration of water clusters in the gas phase in saturated vapor under standard conditions is 1–2 orders of magnitude higher than the concentrations calculated only for the lowest-energy structures.
Texto integral

Sobre autores
E. Shirokova
Lobachevsky State University of Nizhni Novgorod
Autor responsável pela correspondência
Email: ekashirokova@gmail.com
Rússia, Nizhny Novgorod
S. Ignatov
Lobachevsky State University of Nizhni Novgorod
Email: ekashirokova@gmail.com
Rússia, Nizhny Novgorod
Bibliografia
- I.K. Larin, Russ. J. Phys. Chem. B 16, 492 (2022). https://doi.org/10.1134/S1990793122030083
- Il. S. Golyak, D. R. Anfimov, I. B. Vintaykin et al., Russ. J. Phys. Chem. B 17, 320 (2023). https://doi.org/10.1134/S1990793123020264
- G.V. Golubkov, A.A Berlin, Y.A. Dyakov et al., Russ. J. Phys. Chem. B 17, 1216 (2023). https://doi.org/10.1134/S1990793123050214
- V. Vaida, J. Chem. Phys. 135, 020901 (2011). https://doi.org/10.1063/1.3608919
- J.M. Anglada, G.J. Hoffman, L.V. Slipchenko et al., J. Phys. Chem. A 117, 10381 (2013). https://doi.org/10.1021/jp407282c
- N.C. Frederiks, A. Hariharan, and C.J. Johnson, Annu. Rev. Phys. Chem. 74, 99 (2023). https://doi.org/10.1146/annurev-physchem-062322-041503
- S.K. Ignatov, P.G. Sennikov, A.G. Razuvaev et al., J. Phys. Chem. A 107, 8705 (2003). https://doi.org/10.1021/jp034618h
- S.K. Ignatov, P.G. Sennikov, A.G. Razuvaev, and O. Schrems, J. Phys. Chem. A 108, 3642 (2004). https://doi.org/10.1021/jp038041f
- K. Morokuma and C. Muguruma, J. Am. Chem. Soc. 116, 10316 (1994). https://doi.org/10.1021/ja00101a068
- M.A. Vincent, I.J. Palmer, I.H. Hillier, and E. Akhmatskaya, J. Am. Chem. Soc. 120, 3431 (1998). https://doi.org/10.1021/ja973640j
- S. Okumoto, N. Fujita, and S. Yamabe, J. Phys. Chem. A 102, 3991 (1998). https://doi.org/10.1021/jp980705b
- J.D. Bernal and R.H. Fowler, J. Chem. Phys. 1, 515 (1933). https://doi.org/10.1063/1.1749327
- K.D. Jordan and K. Sen, in Chemical Modelling (Royal Society of Chemistry, Cambridge, 2016). https://doi.org/10.1039/9781782626862-00105
- S.R. Gadre, S.D. Yeole, and N. Sahu, Chem. Rev. 114, 12132 (2014). https://doi.org/10.1021/cr4006632
- S.S. Xantheas, J. Chem. Phys. 102, 4505 (1995). https://doi.org/10.1063/1.469499
- M.E. Dunn, E.K. Pokon, and G.C. Shields, Int. J. Quantum Chem. 100, 1065 (2004). https://doi.org/10.1002/qua.20251
- M.E. Dunn, E.K. Pokon, and G.C. Shields, J. Am. Chem. Soc. 126, 2647 (2004). https://doi.org/10.1021/ja038928p
- B. Temelso, K.A. Archer, and G.C. Shields, J. Phys. Chem. A 115, 12034 (2011). https://doi.org/10.1021/jp2069489
- D.M. Bates and G.S. Tschumper, J. Phys. Chem. A 113, 3555 (2009). https://doi.org/10.1021/jp8105919
- A.E. Galashev, O.R. Rakhmanova, and V.N. Chukanov, Khimicheskaya fizika 24, 90 (2005). https://doi.org/
- O.A. Novruzova, A.N. Novruzov, O.R. Rakhmanova, and A.E. Galashev, Khimicheskaya fizika 26, 74 (2007). https://doi.org/
- A.E. Galashev, Russ. J. Phys. Chem. B 7, 502 (2013). https://doi.org/10.1134/S1990793113050047
- A.E. Galashev, Russ. J. Phys. Chem. B 8, 793 (2014). https://doi.org/10.1134/S1990793114110049
- S.V. Drozdov and A.A. Vostrikov, Tech. Phys. Lett. 26, 397 (2000). https://doi.org/10.1134/1.1262856
- E.D. Belega, K.A. Tatarenko, D.N. Trubnikov and E.A. Cheremukhin, Russ. J. Phys. Chem. B. 3, 404 (2009). https://doi.org/10.1134/S1990793109030105
- V. Babin and F. Paesani, Chemical Physics Letters 580, 1 (2013). https://doi.org/10.1016/j.cplett.2013.06.041
- Y. Wang, V. Babin, J. M. Bowman, and F. Paesani, J. Am. Chem. Soc. 134, 11116 (2012). https://doi.org/10.1021/ja304528m
- M.D. Tissandier, S.J. Singer, and J.V. Coe, J. Phys. Chem. A 104, 752 (2000). https://doi.org/10.1021/jp992711t
- J.D. Mallory and V.A. Mandelshtam, J. Chem. Phys. 145, 064308 (2016). https://doi.org/10.1063/1.4960610
- S. E. Brown, A. W. Götz, X. Cheng et al., J. Am. Chem. Soc. 139, 7082 (2017). https://doi.org/10.1021/jacs.7b03143
- S.K. Ignatov, A.G. Razuvaev, P.G. Sennikov, and O. Schrems, J. Mol. Struct.: THEOCHEM 908, 47 (2009). https://doi.org/10.1016/j.theochem.2009.05.003
- Y.A. Dyakov, S.O. Adamson, P.K. Wang et al., Russ. J. Phys. Chem. B 16, 543 (2022). https://doi.org/10.1134/S1990793122030149
- E.A. Shirokova, A.G. Razuvaev, A.V. Mayorov et al., J. Clust. Sci. 34, 2029 (2023). https://doi.org/10.1007/s10876-022-02365-9
- G. Brinkmann, J. Math. Chem. 46, 1112 (2009). https://doi.org/10.1007/s10910-008-9496-y
- J.-L. Kuo, J.V. Coe, S.J. Singer, Y.B. Band, and L. Ojamäe, J Chem. Phys. 114, 2527 (2001). https://doi.org/10.1063/1.1336804
- T. Miyake and M. Aida, Chem. Phys. Lett. 363, 106 (2002). https://doi.org/10.1016/S0009-2614(02)01150-8
- B. McKay, Combinatorial data. — URL: https://users.cecs.anu.edu.au/~bdm/data/graphs.html
- S.K. Ignatov, A.G. Razuvaev, and A.E. Masunov, in Book of Abstracts ”16-Th V. A. Fock Meeting on Quantum, Theoretical and Computational Chemistry” (Sochi, 2018), p. 10.
- D.C. Liu and J. Nocedal, Mathematical Programming 45, 503 (1989). https://doi.org/10.1007/bf01589116
- B.D. McKay and A. Piperno, J. Symb. Comput. 60, 94 (2014). https://doi.org/10.1016/j.jsc.2013.09.003
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian, Inc., Wallingford CT. Gaussian 03, Revision D.01.
- Chemcraft – graphical software for visualization of quantum chemistry computations.
- S.K. Ignatov. Moltran v.2.5 – Program for molecular visualization and thermodynamic calculations, University of Nizhny Novgorod, 2004.
- H. DeVoe. Thermodynamics and Chemistry. Second Edition. 2019. https://www2.chem.umd.edu/thermobook/v10-screen.pdf
- M.V. Kirov, G.S. Fanourgakis, and S.S. Xantheas, Chem. Phys. Lett. 461, 180 (2008). https://doi.org/10.1016/j.cplett.2008.04.079
- S.V. Gudkovskikh and M.V. Kirov, Chem. Phys. 572, 111947 (2023). https://doi.org/10.1016/j.chemphys.2023.111947
- S.S. Xantheas, Chem. Phys. 258, 225 (2000). https://doi.org/10.1016/S0301-0104(00)00189-0
Arquivos suplementares
