Combustion peculiarities in the 2Co–Ti–Al system and properties of half-metallic ferromagnetic Heusler alloy Co2TiAl

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Combustion in the 2Co–Ti–Al system was observed by high-speed video recording. It is established that combustion occurs in the frontal mode, and the process parameters are determined. The maximum rate of the combustion temperature increase from the moment of initiation to the maximum value reached 2.7 · 104 K/s. The front propagation velocity calculated from the video recording was 9.4 cm/s. A micro-hotspot mode of combustion of the reaction composition was found. The temperature dependences of the electrical resistivity and magnetic moment of the single-phase Co2TiAl product synthesized in the combustion mode have been measured. For the synthesized Co2TiAl sample, the Curie temperature is Tc = 120 ± 5 K, and the electrical resistivity at room temperature is 1.35 μOhm · m. It is shown that the electrical and magnetic properties of the Co2TiAl alloy obtained in the combustion mode are similar to those of alloys obtained by arc melting.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Busurina

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian academy of sciences

Хат алмасуға жауапты Автор.
Email: busurina@ism.ac.ru
Ресей, Chernogolovka

A. Sytschev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian academy of sciences

Email: busurina@ism.ac.ru
Ресей, Chernogolovka

S. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian academy of sciences

Email: busurina@ism.ac.ru
Ресей, Chernogolovka

A. Karpov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian academy of sciences

Email: busurina@ism.ac.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. F. Appel, H. Clemens, F. Fischer, J. Progress Mater. Sci. 81, P. 55 (2016). https://doi.org/10.1016/j.pmatsci.2016.01.001
  2. S.K. Dolukhanyan, A.G. Aleksanyan, G.N. Muradyan et al, Russ. J. Phys. Chem. B 15, 740 (2021). https://doi.org/10.1134/S1990793121040035
  3. R. De Groot, F. Mueller, P. Engen et al., Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024
  4. A.N. Vasilyev, V.D. Buchel’nikov, T. Takagi et al., Physics-Uspekhi. 46, 559 (2003). https://doi.org/10.1070/pu2003v046n06abeh001339
  5. Т. Graf, G. Fecher, J. Barth et al., J. Phys. D: Appl. Phys. 42, 084003 (2009). https://doi.org/10.1088/0022-3727/42/8/084003
  6. Yu.A Perevozchikova, N.I. Kourov, S.M. Emel’yanova et al, Mezhdunarodnyj zhurnal prikladnyh i fundamental’nyh issledovanij. 3, 539 (2016). https://appliedresearch.ru/ru/article/view?id=8928&ysclid=ll6qs1l7xz185782893
  7. B. Fadila, M. Ameri, D. Bensaid et al., J. of Magnetism and Magnetic Materials. 448, 208 (2018). https://doi.org/10.1016/j.jmmm.2017.06.048
  8. M. Koller, T.Chráska, J. Cinert et al., Materials and Design. 126, 351 (2017). https://doi.org/10.1016/j.matdes.2017.04.028
  9. W. Zhang, L. Zhao, Z. Qian et al., J. Alloys Compounds. 431, 65 (2007). https://doi.org/10.1016/j.jallcom.2006.05.083
  10. V.I. Itin, Yu.S. Naiborodenko High-temperature synthesis of intermetallic compounds, Tomsk, Ed. by Tomsk University, 1989 [in Russian].
  11. M. L. Busurina, A.E. Sytschev, A.V. Karpov et al., Russ. J. Phys. Chem. B 14, 999 (2020). https://doi.org/10.1134/S1990793120060020
  12. S.L. Silyakov, M.Yu. Shiryaeva, A.F. Belikova et al., Russ. J. Phys. Chem. B 16, 290 (2022). https://doi.org/10.1134/S1990793122020129
  13. J. Liang, L. Zhu, L.V. Wang, Light Sci. Appl. 7, 42 (2018) https://doi.org/10.1038/s41377-018-0044-7
  14. A.S. Mukasyan, S. Hwang, A.E. Sytchev et al., Combust. Sci.Techn. 115, 335 (1996). https://doi.org/10.1080/00102209608935535
  15. A.S. Rogachev, A.S. Mukasyan, Combust. Explos. Shock Waves. 51, 53 (2015).
  16. N.A. Kochetov, B.S. Seplyarskii, Russ. J. Phys. Chem. B 17, 381 (2023). https://doi.org/10.1134/S1990793123020082
  17. A.S. Rogachev, S.G.Vadchenko, N.V. Sachkova et al., Dokl. Phys. Chem. 478, 27 (2018). https://doi.org/10.1134/S0012501618020021
  18. M.L.Busurina, A.E. Sychev, I.D. Kovalev et al., Combust. Explos. Shock Waves. 56(3), 317 (2020). https://doi.org/10.1134/S0010508220030089
  19. S. Mizusaki, T. Ohnishi, T.C. Ozawa et al., Transactions on Magnetics. 47, 2444 (2011). https://doi.org/10.1109/TMAG.2011.2159581
  20. A.S. Shcherbakov, A.F. Prekul, R.V. Pomorcev, Pis’ma v ZHETF. 32(6), 425 (1980) [in Russian].

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Video frames of the SHS process of a sample of the 2Co + Ti + Al composition in a vacuum, obtained using a high-speed video camera.

Жүктеу (23KB)
3. Fig. 2. Thermogram of the SHS process of the reaction mixture of the composition 2Co+Ti+Al in a vacuum.

Жүктеу (11KB)
4. Fig. 3. Micro-foci on the surface of the combustion front of the 2Co+Ti+Al composition.

Жүктеу (7KB)
5. Fig. 4. Photo of the sample before (1) and after synthesis (2).

Жүктеу (13KB)
6. Fig. 5. Photograph of the microstructure of the surface of a section of a sample of combustion products of a 2Co−Ti−Al mixture and the results of EDA (wt.%).

Жүктеу (20KB)
7. Fig. 6. Temperature dependence of the magnetic moment M of the synthesized Co2TiAl sample cooled in zero magnetic field and a magnetic field H = 10 kA/m.

Жүктеу (16KB)
8. Fig. 7. a – Temperature dependence of specific electrical resistance; b – dependence of ln{σ(T)−σ0} on T−1/4 for the synthesized Co2TiAl sample.

Жүктеу (21KB)

© Russian Academy of Sciences, 2024