Experimental study of a stoichiometric propylene–oxygen–argon mixture ignition behind a reflected shock wave

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A study on the self-ignition of a propylene–oxygen–argon stoichiometric mixture with a volumetric argon content of 95% was carried out. The experiments were performed on a shock tube, which is part of the “Shock Tube” experimental complex of the Institute of Mechanics of Moscow State University, in conditions behind the reflected shock wave. The time dependences of signals from a piezoelectric pressure sensor, a thermoelectric detector and an optical section configured to record the radiation of electronically excited radicals OH (l = 302 nm), CH (l = 427 nm, and molecular carbon C2 (l = 553 nm) were analyzed. The ignition delay times τign were measured in the temperature range T = 1200–2460 K and pressures p = 4.5–25 atm. The data obtained are compared with the results of other authors.

Full Text

Restricted Access

About the authors

P. V. Kozlov

Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

Russian Federation, Moscow

M. A. Kotov

Moscow State University; Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: levashovvy@imec.msu.ru

Institute of Mechanics

Russian Federation, Moscow; Moscow

G. Ya. Gerasimov

Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

Russian Federation, Moscow

V. Yu. Levashov

Moscow State University

Author for correspondence.
Email: levashovvy@imec.msu.ru

Institute of Mechanics

Russian Federation, Moscow

N. G. Bykova

Moscow State University

Email: vyl69@mail.ru

Institute of Mechanics

Russian Federation, Moscow

I. E. Zabelinskii

Moscow State University

Email: levashovvy@imec.msu.ru

Institute of Mechanics

Russian Federation, Moscow

References

  1. G.L. Agafonov and A.M. Tereza, Russ. J. Phys. Chem. B 9, 92 (2015).
  2. K.C. Lin and C.-T. Chiu, Fuel 203, 102 (2017).
  3. K.L. Tay, W. Yang, B. Mohan, H.A.D. Zhou, and W. Yu, Energy Conver. Manage. 108, 446 (2016).
  4. G.Ya. Gerasimov, Yu.V. Tunik, P.V. Kozlov, V.Yu. Levashov, I.E. Zabelinskii, N.G. Bykova, Russ. J. Phys. Chem. B 15, 637 (2021).
  5. S.G. Davis, C.K. Law, and H. Wang, Combust. Flame 119, 375 (1999).
  6. A.D. Kiverin, K.O. Minaev, and I.S. Yakovenko, Russ. J. Phys. Chem. B 14, 614 (2020).
  7. S. Dong, K. Zhang, P.K. Senecal et al., Proc. Combust. Inst. 38, 611 (2021).
  8. X. Liang, S. Zhu, X. Wang, and K. Wang, Fuel 302, 121130 (2021).
  9. A. Ramalingam, S. Panigrahy, Y. Fenard, H. Curran, and K.A. Heufer, Combust. Flame 223, 361 (2021).
  10. J.-Y. Jia, M. Wen, Z.-H. Zheng, X.-P. Yu, Y.-Z. Yao, and Z.-Y. Tian, Fuel 353, 129199 (2023).
  11. S.M. Burke, U. Burke, R. McDonagh et al., Combust. Flame 162, 296 (2015).
  12. M.A. Kotov, H.V. Kozlov, G. Ya. Gerasimov et al., Russ. J. Phys. Chem. B 16, 655 (2022).
  13. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al., Russ. J. Phys. Chem. B 14, 654 (2020).
  14. P.N. Brevnov, L.A. Novokshonova, V.G. Krasheninnikov et al., Russ. J. Phys. Chem. B 13, 825 (2019).
  15. R.K. Hanson and D.F. Davidson, Prog. Energy Combust. Sci. 44, 103 (2014).
  16. P.V. Kozlov, G.Ya. Gerasimov, V.Yu. Levashov, Yu.V. Akimov, I.E. Zabelinsky, and N.G. Bykova, Russ. J. Phys. Chem. B 15, 827 (2021).
  17. A Chemical Equilibrium Program for Windows. http://www.gaseq.co.uk/
  18. S. Dong, K. Zhang, P.K. Senecal et al., Proc. Combust. Inst. 38, 611 (2021).
  19. J. Shao, D.F. Davidson, and R.K. Hanson, Fuel 225, 370 (2018).
  20. E. Carbone, F. D’Isa, A. Hecimovic, and U. Fantz, Plasma Sources Sci. Technol. 29, 055003 (2020).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Shock tube diagram: D – diaphragm, P – pressure sensor, TD – thermoelectric detector, OS – optical section.

Download (12KB)
3. Fig. 2. Spectral radiation density of the mixture, I, during its ignition at T = 1505 K and p = 5.9 atm.

Download (14KB)
4. Fig. 3. Evolution of pressure P and radiation intensity of electronically excited radicals CH• (1), OH• (2) and molecules C2• (3) at T = 1868 K and p = 4.44 atm.

Download (18KB)
5. Fig. 4. P, TD and OS readings indicating ignition of the mixture at T = 2457 K and p = 20.6 atm.

Download (17KB)
6. Fig. 5. Ignition delay times in the stoichiometric C3H6/O2/Ar mixture measured in this work at p = 4.5–6.0 atm (1) and p = 12–25 atm (2), in comparison with the experimental data from [11], obtained at p = 4.5 atm (3), and from [20], obtained at p = 15 atm (4). Lines are approximation curves.

Download (14KB)

Copyright (c) 2024 Russian Academy of Sciences