Energy capabilities of model mixed solid propellants based on dinitrobifuroxans, dinitrotrifuroxans and dinitroazobifuroxans
- Autores: Zyuzin I.N.1, Gudkova I.Y.1, Lempert D.B.1
-
Afiliações:
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Edição: Volume 44, Nº 4 (2025)
- Páginas: 54-62
- Seção: Combustion, explosion and shock waves
- URL: https://medjrf.com/0207-401X/article/view/682726
- DOI: https://doi.org/10.31857/S0207401X25040062
- ID: 682726
Citar
Resumo
The energy capabilities of some dinitrobifuroxans, dinitrotrifuroxans and dinitroazоbifuroxans as potential components of mixed solid propellants have been studied. The effect of isomerism of these compounds on the energy capabilities of model compositions based on them is considered. For this purpose, thermodynamic calculations were carried out for six compounds with nitrobifuroxan fragments in the molecules. Quantitative dependences of the energy parameters of the fuel on the properties of the oxidizer under study, the type of binder and the content of the latter have been established. For this purpose, thermodynamic calculations were carried out for six compounds with nitrobifuroxan fragments in the molecules.
Texto integral

Sobre autores
I. Zyuzin
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: zyuzin@icp.ac.ru
Rússia, Chernogolovka
I. Gudkova
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: zyuzin@icp.ac.ru
Rússia, Chernogolovka
D. Lempert
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: zyuzin@icp.ac.ru
Rússia, Chernogolovka
Bibliografia
- I.Yu. Gudkova, I.N. Zyuzin, D.B. Lempert. Russ. J. Phys. Chem. B 14, 302 (2020). https://doi.org/10.1134/S1990793120020062
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 14, 804 (2020). https://doi.org/10.1134/S1990793120050140
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 15, 611 (2021). https://doi.org/10.1134/S1990793121040138
- I.N. Zyuzin, V.M. Volochov, D.B. Lempert. Russ. J. Phys. Chem. B 15, 810 (2021). https://doi.org/10.1134/S1990793121050109
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. // J. Phys. Chem. B 16, 58 (2022). https://doi.org/10.1134/S1990793122010067
- I.Yu. Gudkova, I.N. Zyuzin, D.B. Lempert. Russ. J. Phys. Chem. B 16, 902 (2022). https://doi.org/10.1134/S1990793122050141
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 16, 1117 (2022). https://doi.org/10.1134/S1990793122060240
- I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 17, 710 (2023). https://doi.org/10.1134/S1990793123030156
- T.I. Godovikova, N.N. Makhova. Ross. Khim. Zh. 41 (2), 54 (1997) [in Russian].
- L.L. Fershtat, N.N. Makhova. Russ. Chem. Rev. 85, 1097 (2016). https://doi.org/10.1070/RCR4619
- Junlin Zhang, Jing Zhou, Fuqiang Bi, Bozhou Wang. Chin. Chem. Lett. 31, 2375 (2020). https://doi.org/10.1016/j.cclet.2020.01.026
- A.A. Larin, A.V. Shaferov, M.A. Epishina, I.N. Melnikov, N.V. Muravyev, I.V. Ananyev, L.L. Fershtat, N.N. Makhova. ACS Appl. Energy Mater. 3, 7764 (2020). https://doi.org/10.1021/acsaem.0c01162
- A.A. Larin, D.D. Degtyarev, I.V. Ananyev, A.N. Pivkina, L.L. Fershtat. Chem. Eng. J. 470, 144144 (2023). https://doi.org/10.1016/j.cej.2023.144144
- Lianjie Zhai, Fuqiang Bi, Yifen Luo, Naixing Wang, Junlin Zhang, Bozhou Wang. Sci. Rep. 9, 4321 (2019). https://doi.org/10.1038/s41598-019-39723-z
- I.V. Ovchinnikov, N.N. Makhova, L.I. Khmel′nitskii, V.S. Kuz′min, L.N. Akimova, V.I. Pepekin. Doklady Akademii nauk 359, 499 (1998) [in Russian].
- D. Fischer, T.M. Klapötke, J. Stierstorfer. Eur. J. Inorg. Chem. 2014, 5808 (2014). https://doi.org/10.1002/ejic.201402960
- L.L. Fershtat, A.A. Larin, M.A. Epishina, A.S. Kulikov, I.V. Ovchinnikov, I.V. Ananyev, N.N. Makhova. Tetrahedron Lett. 57, 4268 (2016). http://dx.doi.org/10.1016/j.tetlet.2016.08.011
- T.I. Godovikova, O.A. Rakitin, S.P. Golova, S.A. Vozchikova, L.I. Khmel’nitskii. Mendeleev Commun. 3, 209 (1993). https://doi.org/10.1070/MC1993v003n05ABEH000296
- I.V. Ovchinnikov, N.N. Makhova, L.I. Khmel’nitskii. Russ. Chem. Bull. 44, 702 (1995). https://doi.org/10.1007/BF00698507
- Chunlin He, Haixiang Gao, G.H. Imler, D.A. Parrish, J.M. Shreeve. J. Mater. Chem. A 6, 9391 (2018). https://doi.org/10.1039/C8TA02274G
- Hualin Xiong, Hongwei Yang, Caijin Lei, Pengjiu Yang, Wei Hu, Guangbin Cheng. Dalton Trans. 48, 14705 (2019). https://doi.org/10.1039/C9DT02684C
- A.A. Larin, N.V. Muravyev, A.N. Pivkina, K.Yu. Suponitsky, I.V. Ananyev, D.V. Khakimov, L.L. Fershtat, N.N. Makhova. Chem. Eur. J. 25, 4225 (2019). https://doi.org/10.1002/chem.201806378
- Yongxing Tang, Haixiang Gao, G.H. Imler, D.A. Parrish, J.M. Shreeve. RSC Adv. 6, 91477 (2016). https://doi.org/10.1039/C6RA22007J
- A.I. Stepanov, V.S. Sannikov, D.V. Dashko, A.G. Roslyakov, A.A. Astratґev, Z.G. Aliev, T.K. Goncharov, S.M. Aldoshin. Russ. Chem. Bull. 65, 2063 (2016). https://doi.org/10.1007/S11172-016-1553-2
- Yongxing Tang, Chunlin He, L.A. Mitchell, D.A. Parrish, J.M. Shreeve. Angew. Chem. Int. Ed. 55, 5565 (2016). https://doi.org/10.1002/anie.201601432
- Ph.F. Pagoria, Maoxi Zhang, N.B. Zuckerman, A.J. DeHope, D. Parrish. Chem. Heterocycl. Compd. 53, 760 (2017). https://doi.org/ 10.1007/s10593-017-2122-9
- Bohan Wang, Hualin Xiong, Guangbin Cheng, Hongwei Yang. ChemPlusChem 83, 439 (2018). https://doi.org/10.1002/cplu.201800107
- Lianjie Zhai, Fuqiang Bi, Yifen Luo, Naixing Wang, Junlin Zhang, Bozhou Wang. Scie. Rep. 9, 4321 (2019). https://doi.org/10.1038/s41598-019-39723-z
- L.L. Fershtat, I.V. Ovchinnikov, M.A. Epishina, A.A. Romanova, D.B. Lempert, N.V. Muravyev, N.N. Makhova. ChemPlusChem 82, 1315 (2017). https://doi.org/ 10.1002/cplu.201700340
- D. Fischer, T.M. Klapötke, J. Stierstorfer, Eur. J. Inorg. Chem. 2014, 5808 (2014). https://doi.org/10.1002/ejic.201402960
- V.V. Parakhin, P.B. Gordeev, O.A. Luk’yanov. Russ. Chem. Bull. 67, 1065 (2018). https://doi.org/10.1007/s11172-018-2181-9
- Lianjie Zhai, Fuqiang Bi, Junlin Zhang, Jiarong Zhang, Xiangzhi Li, Bozhou Wang, Sanping Chen. ACS Omega 5 (19), 11115 (2020). https://doi.org/10.1021/acsomega.0c01048
- Qiong Yu, A. K. Chinnam, Ping Yin, G.H. Imler, D.A. Parrish, J.M. Shreeve. J. Mater. Chem. A 8, 5859 (2020). https://doi.org/10.1039/D0TA01538E
- A.A. Larin, A.V. Shaferov, K.A. Monogarov, D.B.Meerov, A.N. Pivkina, L.L. Fershtat. Mendeleev Commun. 32, 111 (2022). https://doi.org/10.1016/j.mencom.2022.01.036
- R.Z. Gilmanov, V G. Nikitin, F.G.Khayrutdinov, K.V. Strizhenko, K.Yu. Suponitsky, A.B. Sheremetev. Mendeleev Commun. 32, 114 (2022). https://doi.org/10.1016/j.mencom.2022.01.037
- A.A. Larin, D.M. Bystrov, L.L. Fershtat, A.A. Konnov, N.N. Makhova, K.A. Monogarov, D.B. Meerov, I.N. Melnikov, A.N. Pivkina, N.V. Muravyev. Molecules 25, 5836 (2020). https://doi.org/10.3390/molecules25245836
- V.A. Ogurtsov, P.V. Dorovatovskii, Yan V. Zubavichus, V.N. Khrustalev, A.N. Fakhrutdinov, S.G Zlotin, O.A. Rakitin. Tetrahedron Lett. 59, 3143 (2018). https://doi.org/10.1016/j.tetlet.2018.07.015
- Yuangang Xu, Lujia Ding, Feng Yang, Dongxue Li, Pengcheng Wang, Qiuhan Lin, Ming Lu. Chem. Eng. J. 429, 132399 (2022). https://doi.org/10.1016/j.cej.2021.132399
- D.B. Lempert, E.L. Ignatieva, A.I. Stepanov, D.V. Dashko, A.I. Kazakov, A.V. Nabatova, G. V. Shilov, S.M. Aldoshin. Russ. J. Phys. Chem. B 17, 1 (2023). https://doi.org/10.1134/S1990793123010256
- D.B. Lempert, E.L. Ignatieva, A.I. Stepanov, D.V. Dashko, A.I. Kazakov, A.V. Nabatova, G.V. Shilov, A.N. Utenyshev, S.M. Aldoshin. Russ. J. Phys. Chem. B 17, 702 (2023). https://doi.org/10.1134/S1990793123030065
- D.B. Lempert, E.L. Ignatieva, A.I. Stepanov, D.V. Dashko, A.I. Kazakov, A.V. Nabatova, G.V. Shilov, D.V. Korchagin, S.M. Aldoshin. Russ. J. Phys. Chem. B 17, 1106 (2023). https://doi.org/10.1134/S1990793123050068
- D.B. Lempert, E.L. Ignatieva, A.I. Stepanov, D.V. Dashko, A.I. Kazakov, A.V. Nabatova, G.V. Shilov, G.V. Lagodzinskaya, D.V. Korchagin, S.M. Aldoshin. Russ. J. Phys. Chem. B 18, 172 (2024). https://doi.org/10.1134/S1990793124010135
- D.B. Lempert. Chin. J. Explos. Propel. 38 (4), 1 (2015). https://doi.org/10.14077/j.issn.1007-7812.2015.04.001
- B.G. Trusov. Program System TERRA for Simulation Phase and Thermal Chemical Equilibrium, XIV Intern. Symp. on Chemical Thermodynamics, St-Petersburg, 483 (2002).
- G. Pavlovets, V. Tsutsuran. Physical and Chemical Properties of Powders and Rocket Propellants (Ministry of Defense, Moscow, 2009) [in Russian].
Arquivos suplementares
