Energy capabilities of model mixed solid propellants based on dinitrobifuroxans, dinitrotrifuroxans and dinitroazobifuroxans

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The energy capabilities of some dinitrobifuroxans, dinitrotrifuroxans and dinitroazоbifuroxans as potential components of mixed solid propellants have been studied. The effect of isomerism of these compounds on the energy capabilities of model compositions based on them is considered. For this purpose, thermodynamic calculations were carried out for six compounds with nitrobifuroxan fragments in the molecules. Quantitative dependences of the energy parameters of the fuel on the properties of the oxidizer under study, the type of binder and the content of the latter have been established. For this purpose, thermodynamic calculations were carried out for six compounds with nitrobifuroxan fragments in the molecules.

Texto integral

Acesso é fechado

Sobre autores

I. Zyuzin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: zyuzin@icp.ac.ru
Rússia, Chernogolovka

I. Gudkova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyuzin@icp.ac.ru
Rússia, Chernogolovka

D. Lempert

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyuzin@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. I.Yu. Gudkova, I.N. Zyuzin, D.B. Lempert. Russ. J. Phys. Chem. B 14, 302 (2020). https://doi.org/10.1134/S1990793120020062
  2. I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 14, 804 (2020). https://doi.org/10.1134/S1990793120050140
  3. I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 15, 611 (2021). https://doi.org/10.1134/S1990793121040138
  4. I.N. Zyuzin, V.M. Volochov, D.B. Lempert. Russ. J. Phys. Chem. B 15, 810 (2021). https://doi.org/10.1134/S1990793121050109
  5. I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. // J. Phys. Chem. B 16, 58 (2022). https://doi.org/10.1134/S1990793122010067
  6. I.Yu. Gudkova, I.N. Zyuzin, D.B. Lempert. Russ. J. Phys. Chem. B 16, 902 (2022). https://doi.org/10.1134/S1990793122050141
  7. I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 16, 1117 (2022). https://doi.org/10.1134/S1990793122060240
  8. I.N. Zyuzin, I.Yu. Gudkova, D.B. Lempert. Russ. J. Phys. Chem. B 17, 710 (2023). https://doi.org/10.1134/S1990793123030156
  9. T.I. Godovikova, N.N. Makhova. Ross. Khim. Zh. 41 (2), 54 (1997) [in Russian].
  10. L.L. Fershtat, N.N. Makhova. Russ. Chem. Rev. 85, 1097 (2016). https://doi.org/10.1070/RCR4619
  11. Junlin Zhang, Jing Zhou, Fuqiang Bi, Bozhou Wang. Chin. Chem. Lett. 31, 2375 (2020). https://doi.org/10.1016/j.cclet.2020.01.026
  12. A.A. Larin, A.V. Shaferov, M.A. Epishina, I.N. Melnikov, N.V. Muravyev, I.V. Ananyev, L.L. Fershtat, N.N. Makhova. ACS Appl. Energy Mater. 3, 7764 (2020). https://doi.org/10.1021/acsaem.0c01162
  13. A.A. Larin, D.D. Degtyarev, I.V. Ananyev, A.N. Pivkina, L.L. Fershtat. Chem. Eng. J. 470, 144144 (2023). https://doi.org/10.1016/j.cej.2023.144144
  14. Lianjie Zhai, Fuqiang Bi, Yifen Luo, Naixing Wang, Junlin Zhang, Bozhou Wang. Sci. Rep. 9, 4321 (2019). https://doi.org/10.1038/s41598-019-39723-z
  15. I.V. Ovchinnikov, N.N. Makhova, L.I. Khmel′nitskii, V.S. Kuz′min, L.N. Akimova, V.I. Pepekin. Doklady Akademii nauk 359, 499 (1998) [in Russian].
  16. D. Fischer, T.M. Klapötke, J. Stierstorfer. Eur. J. Inorg. Chem. 2014, 5808 (2014). https://doi.org/10.1002/ejic.201402960
  17. L.L. Fershtat, A.A. Larin, M.A. Epishina, A.S. Kulikov, I.V. Ovchinnikov, I.V. Ananyev, N.N. Makhova. Tetrahedron Lett. 57, 4268 (2016). http://dx.doi.org/10.1016/j.tetlet.2016.08.011
  18. T.I. Godovikova, O.A. Rakitin, S.P. Golova, S.A. Vozchikova, L.I. Khmel’nitskii. Mendeleev Commun. 3, 209 (1993). https://doi.org/10.1070/MC1993v003n05ABEH000296
  19. I.V. Ovchinnikov, N.N. Makhova, L.I. Khmel’nitskii. Russ. Chem. Bull. 44, 702 (1995). https://doi.org/10.1007/BF00698507
  20. Chunlin He, Haixiang Gao, G.H. Imler, D.A. Parrish, J.M. Shreeve. J. Mater. Chem. A 6, 9391 (2018). https://doi.org/10.1039/C8TA02274G
  21. Hualin Xiong, Hongwei Yang, Caijin Lei, Pengjiu Yang, Wei Hu, Guangbin Cheng. Dalton Trans. 48, 14705 (2019). https://doi.org/10.1039/C9DT02684C
  22. A.A. Larin, N.V. Muravyev, A.N. Pivkina, K.Yu. Suponitsky, I.V. Ananyev, D.V. Khakimov, L.L. Fershtat, N.N. Makhova. Chem. Eur. J. 25, 4225 (2019). https://doi.org/10.1002/chem.201806378
  23. Yongxing Tang, Haixiang Gao, G.H. Imler, D.A. Parrish, J.M. Shreeve. RSC Adv. 6, 91477 (2016). https://doi.org/10.1039/C6RA22007J
  24. A.I. Stepanov, V.S. Sannikov, D.V. Dashko, A.G. Roslyakov, A.A. Astratґev, Z.G. Aliev, T.K. Goncharov, S.M. Aldoshin. Russ. Chem. Bull. 65, 2063 (2016). https://doi.org/10.1007/S11172-016-1553-2
  25. Yongxing Tang, Chunlin He, L.A. Mitchell, D.A. Parrish, J.M. Shreeve. Angew. Chem. Int. Ed. 55, 5565 (2016). https://doi.org/10.1002/anie.201601432
  26. Ph.F. Pagoria, Maoxi Zhang, N.B. Zuckerman, A.J. DeHope, D. Parrish. Chem. Heterocycl. Compd. 53, 760 (2017). https://doi.org/ 10.1007/s10593-017-2122-9
  27. Bohan Wang, Hualin Xiong, Guangbin Cheng, Hongwei Yang. ChemPlusChem 83, 439 (2018). https://doi.org/10.1002/cplu.201800107
  28. Lianjie Zhai, Fuqiang Bi, Yifen Luo, Naixing Wang, Junlin Zhang, Bozhou Wang. Scie. Rep. 9, 4321 (2019). https://doi.org/10.1038/s41598-019-39723-z
  29. L.L. Fershtat, I.V. Ovchinnikov, M.A. Epishina, A.A. Romanova, D.B. Lempert, N.V. Muravyev, N.N. Makhova. ChemPlusChem 82, 1315 (2017). https://doi.org/ 10.1002/cplu.201700340
  30. D. Fischer, T.M. Klapötke, J. Stierstorfer, Eur. J. Inorg. Chem. 2014, 5808 (2014). https://doi.org/10.1002/ejic.201402960
  31. V.V. Parakhin, P.B. Gordeev, O.A. Luk’yanov. Russ. Chem. Bull. 67, 1065 (2018). https://doi.org/10.1007/s11172-018-2181-9
  32. Lianjie Zhai, Fuqiang Bi, Junlin Zhang, Jiarong Zhang, Xiangzhi Li, Bozhou Wang, Sanping Chen. ACS Omega 5 (19), 11115 (2020). https://doi.org/10.1021/acsomega.0c01048
  33. Qiong Yu, A. K. Chinnam, Ping Yin, G.H. Imler, D.A. Parrish, J.M. Shreeve. J. Mater. Chem. A 8, 5859 (2020). https://doi.org/10.1039/D0TA01538E
  34. A.A. Larin, A.V. Shaferov, K.A. Monogarov, D.B.Meerov, A.N. Pivkina, L.L. Fershtat. Mendeleev Commun. 32, 111 (2022). https://doi.org/10.1016/j.mencom.2022.01.036
  35. R.Z. Gilmanov, V G. Nikitin, F.G.Khayrutdinov, K.V. Strizhenko, K.Yu. Suponitsky, A.B. Sheremetev. Mendeleev Commun. 32, 114 (2022). https://doi.org/10.1016/j.mencom.2022.01.037
  36. A.A. Larin, D.M. Bystrov, L.L. Fershtat, A.A. Konnov, N.N. Makhova, K.A. Monogarov, D.B. Meerov, I.N. Melnikov, A.N. Pivkina, N.V. Muravyev. Molecules 25, 5836 (2020). https://doi.org/10.3390/molecules25245836
  37. V.A. Ogurtsov, P.V. Dorovatovskii, Yan V. Zubavichus, V.N. Khrustalev, A.N. Fakhrutdinov, S.G Zlotin, O.A. Rakitin. Tetrahedron Lett. 59, 3143 (2018). https://doi.org/10.1016/j.tetlet.2018.07.015
  38. Yuangang Xu, Lujia Ding, Feng Yang, Dongxue Li, Pengcheng Wang, Qiuhan Lin, Ming Lu. Chem. Eng. J. 429, 132399 (2022). https://doi.org/10.1016/j.cej.2021.132399
  39. D.B. Lempert, E.L. Ignatieva, A.I. Stepanov, D.V. Dashko, A.I. Kazakov, A.V. Nabatova, G. V. Shilov, S.M. Aldoshin. Russ. J. Phys. Chem. B 17, 1 (2023). https://doi.org/10.1134/S1990793123010256
  40. D.B. Lempert, E.L. Ignatieva, A.I. Stepanov, D.V. Dashko, A.I. Kazakov, A.V. Nabatova, G.V. Shilov, A.N. Utenyshev, S.M. Aldoshin. Russ. J. Phys. Chem. B 17, 702 (2023). https://doi.org/10.1134/S1990793123030065
  41. D.B. Lempert, E.L. Ignatieva, A.I. Stepanov, D.V. Dashko, A.I. Kazakov, A.V. Nabatova, G.V. Shilov, D.V. Korchagin, S.M. Aldoshin. Russ. J. Phys. Chem. B 17, 1106 (2023). https://doi.org/10.1134/S1990793123050068
  42. D.B. Lempert, E.L. Ignatieva, A.I. Stepanov, D.V. Dashko, A.I. Kazakov, A.V. Nabatova, G.V. Shilov, G.V. Lagodzinskaya, D.V. Korchagin, S.M. Aldoshin. Russ. J. Phys. Chem. B 18, 172 (2024). https://doi.org/10.1134/S1990793124010135
  43. D.B. Lempert. Chin. J. Explos. Propel. 38 (4), 1 (2015). https://doi.org/10.14077/j.issn.1007-7812.2015.04.001
  44. B.G. Trusov. Program System TERRA for Simulation Phase and Thermal Chemical Equilibrium, XIV Intern. Symp. on Chemical Thermodynamics, St-Petersburg, 483 (2002).
  45. G. Pavlovets, V. Tsutsuran. Physical and Chemical Properties of Powders and Rocket Propellants (Ministry of Defense, Moscow, 2009) [in Russian].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig.1. Structural formulas of compounds I–VI: I – 3,4′-dinitro-3,3′-bifuroxan; II – 4,3′-dinitro-3,4′-bifuroxane; III – 3,4-bis(4-nitro-furoxan-3-yl)furoxan; IV – 3,4-bis(4-nitro-furoxan-3-yl)furoxan; V – 4,4′-di(4-nitrofuroxan-3-yl)-3,3′-azofuroxan; VI – 4,4′-di(3-nitrofuroxan-4-yl)-3,3′-azofuroxan.

Baixar (226KB)
3. Fig. 2. Dependence of the value of Ief(3) of the composition “AC + US + main filler I–VII” on the proportion of US in the total binder “AC + US” with a volume content of binder of 18%.

Baixar (149KB)
4. Scheme

Baixar (36KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025