Features of interpretation of pulsed radiation-induced conductivity of polymers at low temperature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The pulsed radiation-induced conductivity of polyethylene and polypropylene was studied at low (about 100 K) temperatures under the influence of electron pulses with an energy of 50 keV and a duration of 1 ms. To explain the results obtained, the Rose-Fowler-Vaisberg model was used. It is shown that when using it, it is necessary to take into account the difference in the shifts of carriers in a unit electric field before the first trapрing (μ-0τ-0) and those moving by recapture along traps (μ0τ0) appearing in the theoretical Rose–Fowler–Vaisberg model. Both of these parameters were calculated based on the results of experimental results.

Full Text

Restricted Access

About the authors

I. R. Mullakhmetov

National Research University Higher School of Economics

Author for correspondence.
Email: sseew111@gmail.com

Tikhonov Moscow Institute of Electronics and Mathematics

Russian Federation, Moscow

V. S. Saenko

National Research University Higher School of Economics

Email: sseew111@gmail.com

Tikhonov Moscow Institute of Electronics and Mathematics

Russian Federation, Moscow

A. P. Tyutnev

National Research University Higher School of Economics

Email: sseew111@gmail.com

Tikhonov Moscow Institute of Electronics and Mathematics

Russian Federation, Moscow

E. D. Pozhidaev

National Research University Higher School of Economics

Email: sseew111@gmail.com

Tikhonov Moscow Institute of Electronics and Mathematics

Russian Federation, Moscow

References

  1. A.P. Tyutnev, V.S. Saenko, E.D. Pozhidaev, N.S. Kostyukov, Dielectric properties of polymers in fields of ionizing radiation (Nauka, Moscow, 2005). [in Russian].
  2. A.P. Tyutnev, V.N. Abramov, P.I. Dubenskov, A.V. Vannikov, V.S. Saenko, Reports of the USSR Academy of Sciences. 289 (6), 1437 (1986).
  3. A.P. Tyutnev, D.N. Sadovnichiy, V.S. Saenko, E.D. Pozhidaev. Polymer Science, Series A. 47 (11), 1971 (2005).
  4. А.P. Tyutnev, V.S. Saenko, R.Sh. Ikhsanov, E.A. Krouk. J. Appl. Phys. 126, 095501 (2019). https://doi.org/10.1063/1.5109768
  5. A.P. Tyutnev, R.Sh. Ikhsanov, V.S. Saenko, E.D. Pozhidaev. Polymer Science, Series A. 48 (11), 2015 (2006).
  6. A.P. Tyutnev, V.S. Saenko, I.R. Mullakhmetov, A.E. Abrameshin. J. Appl. Phys. 129, 175107 (2021). https://doi.org/10.1063/5.0048649
  7. I.R. Mullakhmetov, A.P. Tyutnev, V.S. Saenko, E.D. Pozhidaev. Technical Physics. 93 (1), 130 (2023). https://doi.org/10.21883/JTF.2023.01.54072.207-22
  8. A.P. Tyutnev, V.S Saenko, I.R. Mullakhmetov, A.E Abrameshin. J. Appl. Phys. 132, 135105 (2022). https://doi.org/10.1063/5.0106159
  9. A.P. Tyutnev, V.S. Saenko, I.R. Mullakhmetov, E.D. Pozhidaev. J. Appl. Phys. 134, 095903 (2023). https://doi.org/10.1063/5.0158855
  10. V.I. Gol’danskij, L.I. Trahtenberg, V.N. Flerov. Tunnel phenomena in chemical physics (Nauka, Moscow, 1986). [in Russian].
  11. A.P. Tyutnev, V.S. Saenko, E.D. Pozhidaev. Khim. fizika 25 (1), 79 (2006).
  12. A.P. Tyutnev, V.S. Saenko, E.D. Pozhidaev. IEEE Transactions on Plasma Science. 46 (3), 645 (2018). https://doi.org/10.1109/TPS.2017.2778189
  13. A.P. Tyutnev, D.N. Sadovnichii, V.S. Saenko, E.D. Pozhidaev. Polymer Science, Series A. 42 (1), 16 (2000).
  14. G.M. Bartenev, A.G. Barteneva. Relaxation properties of polymers (Khimiya, Moscow, 1992) [in Russian].
  15. V.R. Nikitenko. Non-stationary processes of transfer and recombination of charge carriers in thin layers of organic materials (NRNU MEPhI, Moscow, 2011). [in Russian].
  16. M.D. Khan, V.R. Nikitenko, A.P. Tyutnev, R.Sh. Ikhsanov. J. Phys. Chem. C. 123 (3), 1653 (2019). https://doi.org/10.1021/acs.jpcc.8b11520
  17. L.V. Lukin. Russ. J. Phys. Chem. B. 17 (6), 1300 (2023). https://doi.org/10.1134/S1990793123060180
  18. L.V. Lukin // Russ. J. Phys. Chem. B. 18 (6) (2024).
  19. G. N. Gerasimov, V. F. Gromov, M. I. Ikim et al. Russ. J. Phys. Chem. B. 15 (6), 1102 (2021). https://doi.org/10.1134/S1990793121310018
  20. G. V. Simbirtseva, S. D. Babenko. Russ. J. Phys. Chem. B. 17 (6), 1309 (2023). https://doi.org/10.1134/S1990793123060222

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental (1) and calculated (2) radiation-pulse conductivity of LDPE at 103 K and dose rate of 2.1 ∙ 104 Gy/s.

Download (200KB)
3. Fig. 2. Experimental (1) and calculated (2) radiation-pulse electrical conductivity of PP at 103 K and dose rate of 1.7 ∙ 104 Gy/s.

Download (185KB)
4. Fig. 3. Experimental (1, black, Kr /Kp ratio is plotted on the ordinate axis) and calculated (2, Kr /Kp′ ratio is plotted on the ordinate axis) RIE curves of LDPE at 298 K and a dose rate of 6.2 ∙ 105 Gy/s. Curve 2 practically coincides with curve 1, which sharply decreases to zero at t ≤ 0.4 μs (shown by the dashed line) due to the influence of methodological factors (measurement time constant, inertia of the electronic system, etc.). The electron pulse duration is 20 µs. The calculated curve (3, blue) was calculated for the parameter -m0-t0 = 1.9 - 10-16 m2/V (Table 2).

Download (218KB)
5. Fig. 4. Experimental (black) and calculated curves (1-5) demonstrating the method of fitting the frequency factor on the example of LDPE (normalized to the value of jrd at the end of the radiation pulse). The temperature is room temperature, the pulse duration is 20 µs. The frequency factor values are 107 (1), 106 (2), 6 ∙ 105 (3), 2 ∙ 105 (4), and 8 ∙ 104 s-1 (5).

Download (171KB)
6. Fig. 5. Experimental (1) and calculated (2, 3) RIE curves of PP at 298 K and dose rate of 1.7 ∙ 104 Gy/s. For curve 2 the parameter dd1 = 0.1, for curve 3 it is equal to 0.07 (shown by arrows).

Download (190KB)

Copyright (c) 2025 Russian Academy of Sciences