Kinetics of Nd³⁺ luminescent complexes in CCl₄–GaCl₃ solutions
- Авторлар: Tikhonov G.V.1, Seregina E.A.1, Podkopaev A.V.1
-
Мекемелер:
- State Scientific Centre of the Russian Federation – Leypunsky Institute for Physics and Power Engineering
- Шығарылым: Том 44, № 5 (2025)
- Беттер: 56-67
- Бөлім: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://medjrf.com/0207-401X/article/view/683914
- DOI: https://doi.org/10.31857/S0207401X25050073
- ID: 683914
Дәйексөз келтіру
Аннотация
In order to create a low-toxic and cheap liquid laser medium, carbon tetrachloride solutions activated by Nd³⁺ were prepared. The concentration of Nd³⁺ in CCl₄–GaCl₃–Nd³⁺ solutions reaches 1 mol/l, whereas the lifetime of the excited state of Nd³⁺ does not exceed 80 μs and the quantum yield of Nd³⁺ luminescence is less than 0.3. The spectral-luminescent properties of CCl₄–GaCl₃–Nd³⁺ solutions, the kinetics of formation and quenching of luminescent Nd³⁺ complexes are considered. The rate of Nd³⁺ complexation increases with increasing [GaCl₃] : [Nd³⁺] ratio. The limitation of the lifetime of the excited state of Nd³⁺ is due to the overlap of the absorption band of the CCl₄–GaCl₃–Nd³⁺ solution with the luminescent band 4F3/2 → 4I15/2 in the wavelength range of 1840 – 1870 nm.
Негізгі сөздер
Толық мәтін

Авторлар туралы
G. Tikhonov
State Scientific Centre of the Russian Federation – Leypunsky Institute for Physics and Power Engineering
Хат алмасуға жауапты Автор.
Email: gvtikhonov@ippe.ru
Ресей, Obninsk
E. Seregina
State Scientific Centre of the Russian Federation – Leypunsky Institute for Physics and Power Engineering
Email: gvtikhonov@ippe.ru
Ресей, Obninsk
A. Podkopaev
State Scientific Centre of the Russian Federation – Leypunsky Institute for Physics and Power Engineering
Email: gvtikhonov@ippe.ru
Ресей, Obninsk
Әдебиет тізімі
- Varshney A.K., Mainuddin, Singhal G., Nayak J. // Infrared Phys. Technol. 2023. V. 136. 105064. https://doi.org/10.1016/j.infrared.2023.105064
- Anikiev Yu.G., Zhabotinsky M.E., Kravchenko V.B. Lasers Based on Inorganic Liquids. Moscow: Nauka, 1986.
- Seregina E.A. // Chem. Phys. 1996. V. 15. № 8. P. 23–27.
- Melnikov S.P., Sizov A.N., Sinyanskiy A.A. Nuclear-Pumped Lasers: Monograph. Sarov: RFNC–VNIIEF, 2008.
- Dobrovolsky A.F., Kabakov D.V., Seregin A.A. et al. // Quantum Electron. 2009. V. 39. № 2. P. 139.
- Seregina E.A., Dobrovolsky A.F., Kabakov D.V. et al. // Quantum Electron. 2009. V. 39. № 8. P. 705.
- Batyaev I.M., Morev S.Yu. // J. Appl. Chem. 1994. V. 67. № 9. P. 1509.
- Ault E.R., Comaskey B.J., Kuklo T.C. High Average Power Laser Using a Transverse Flowing Liquid Host. U.S. Patent 6600766 B1, 2003.
- Comaskey B.J., Scheibner K.F., Ault E.R. Liquid Heat Capacity Lasers. U.S. Patent 7212558 B2, 2007.
- Xu Z., Su Y., Li C.-L. et al. // High Power Laser and Particle Beams. 2006. V. 18. № 12. P. 1941. http://caod.oriprobe.com/articles/11637037/Experimental_study_on_diode_pumping_inorganic_liquid_laser_output.htm
- Li M., Wang Y., Li C.-L. et al. // Acta Opt. Sin. 2011. V. 31. № 2. P. 135. https://doi.org/10.3788/aos201131.0214004
- Kuhn V., Gottwald T., Stolzenburg C. et al. // Proc. Conf. on Solid State Lasers XXIV: Technology and Devices. San Francisco: SPIE, 2015. V. 9342. 93420Y. https://doi.org/10.1117/12.2079876
- Roshchin A.V., Usin V.V. // Chem. Phys. 2017. V. 36. № 7. P. 3. https://doi.org/10.7868/S0207401X17070123
- Hari Babu Srivastava // Technol. Focus. 2015. V. 23. № 4. P. 15. http://www.drdo.gov.in/drdo/pub/techfocus/ 2015/TF_August_2015_WEB.pdf
- Varshney A.K., Mainuddin M., Kumar S. et al. // Opt. Laser Technol. 2022. V. 148. 107740. https://doi.org/10.1016/j.optlastec.2021.107740
- Varshney A.K., Mainuddin M., Singhal G., Nayak J. // Infrared Phys. Technol. 2022. V. 125. 104265. https://doi.org/10.1016/j.infrared.2022.104265
- Varshney A.K., Mainuddin M., Kumar S. et al. // Opt. Laser Technol. 2023. V. 167. 109811. https://doi.org/10.1016/j.optlastec.2023.109811
- Tikhonov G.V., Babkin A.S., Seregina E.A., Seregin A.A. // Inorg. Mater. 2017. V. 53. № 10. P. 1122. https://doi.org/10.7868/S0002337X17100165
- Babkin A.S., Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2018. V. 125. № 4. P. 507. https://doi.org/10.21883/OS.2018.10.46703.157-18
- Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2020. V. 128. № 10. P. 1441. https://doi.org/10.21883/OS.2020.10.50012.305-20
- Denezhkin I.A., Dyuzhov Yu.A., Kukharchuk O.F. et al. // Modern Chemical Physics. XXXIII Symposium, abstracts. Moscow: Doblest, 2021. P. 306.
- Dohare R.K., Mainuddin, Singhal G. // IJERECE. 2021. V. 8. № 7. P. 1. https://www.technoarete.org/common_abstract/pdf/IJERECE/v8/i7/Ext_93128.pdf
- Belkova N.L., Svinarenko V.A., Batyaev I.M. Active Substance for Liquid Lasers. Author’s Certificate 766504 A1 USSR // Filed 05.03.1979. Published 30.11.1994. https://www.elibrary.ru/download/elibrary_41083508_ 76119515.pdf
- Batyaev I.M., Kabatsky Yu.A. // Bull. Acad. Sci. USSR. Inorg. Mater. 1991. V. 27. № 9. P. 1928.
- Fedorov P.I., Nedev S.K. // J. Inorg. Chem. 1966. V. 11. № 10. P. 2413. http://pavel-fedorov.sitecity.ru/lalbum_2202160615.phtml?pix=0&p_ident=lalbum_2202160615.p_0702164105
- Buchachenko A.L. // Russ. J. Phys. Chem. B. 2024. V. 18. № 1. P. 229. https://doi.org/10.1134/S1990793124010068
- Seregina E.A., Tikhonov G.V. // Chem. Phys. 1996. V. 15. № 8. P. 116.
- Lyubimov E.I., Batyaev I.M. // J. Appl. Chem. 1972. V. 45. № 6. P. 1176.
- Tikhonov G.V., Seregina E.A. // Radiochemistry. 2013. V. 55. № 1. P. 29.
- Razumov V.F. // Chem. Phys. 2023. V. 42. № 2. P. 14. https://doi.org/10.31857/S0207401X23020139
- Coordination Chemistry of Rare Earth Elements / Ed. by Spitsyn V.I., Martynenko L.I. Moscow: MSU, 1979.
- Seregina E.A., Kabakov D.V. // Opt. Spectrosc. 2005. V. 98. № 2. P. 254.
- Seregina E.A., Seregin A.A., Tikhonov G.V., Podkopaev A.V. // Opt. Spectrosc. 2023. V. 131. № 3. P. 332. https://journals.ioffe.ru/articles/55382
- Kaminsky A.A. Laser Crystals. Moscow: Nauka, 1975.
Қосымша файлдар
