Kinetics of Nd³⁺ luminescent complexes in CCl₄–GaCl₃ solutions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In order to create a low-toxic and cheap liquid laser medium, carbon tetrachloride solutions activated by Nd³⁺ were prepared. The concentration of Nd³⁺ in CCl₄–GaCl₃–Nd³⁺ solutions reaches 1 mol/l, whereas the lifetime of the excited state of Nd³⁺ does not exceed 80 μs and the quantum yield of Nd³⁺ luminescence is less than 0.3. The spectral-luminescent properties of CCl₄–GaCl₃–Nd³⁺ solutions, the kinetics of formation and quenching of luminescent Nd³⁺ complexes are considered. The rate of Nd³⁺ complexation increases with increasing [GaCl₃] : [Nd³⁺] ratio. The limitation of the lifetime of the excited state of Nd³⁺ is due to the overlap of the absorption band of the CCl₄–GaCl₃–Nd³⁺ solution with the luminescent band 4F3/24I15/2 in the wavelength range of 1840 – 1870 nm.

Толық мәтін

Рұқсат жабық

Авторлар туралы

G. Tikhonov

State Scientific Centre of the Russian Federation – Leypunsky Institute for Physics and Power Engineering

Хат алмасуға жауапты Автор.
Email: gvtikhonov@ippe.ru
Ресей, Obninsk

E. Seregina

State Scientific Centre of the Russian Federation – Leypunsky Institute for Physics and Power Engineering

Email: gvtikhonov@ippe.ru
Ресей, Obninsk

A. Podkopaev

State Scientific Centre of the Russian Federation – Leypunsky Institute for Physics and Power Engineering

Email: gvtikhonov@ippe.ru
Ресей, Obninsk

Әдебиет тізімі

  1. Varshney A.K., Mainuddin, Singhal G., Nayak J. // Infrared Phys. Technol. 2023. V. 136. 105064. https://doi.org/10.1016/j.infrared.2023.105064
  2. Anikiev Yu.G., Zhabotinsky M.E., Kravchenko V.B. Lasers Based on Inorganic Liquids. Moscow: Nauka, 1986.
  3. Seregina E.A. // Chem. Phys. 1996. V. 15. № 8. P. 23–27.
  4. Melnikov S.P., Sizov A.N., Sinyanskiy A.A. Nuclear-Pumped Lasers: Monograph. Sarov: RFNC–VNIIEF, 2008.
  5. Dobrovolsky A.F., Kabakov D.V., Seregin A.A. et al. // Quantum Electron. 2009. V. 39. № 2. P. 139.
  6. Seregina E.A., Dobrovolsky A.F., Kabakov D.V. et al. // Quantum Electron. 2009. V. 39. № 8. P. 705.
  7. Batyaev I.M., Morev S.Yu. // J. Appl. Chem. 1994. V. 67. № 9. P. 1509.
  8. Ault E.R., Comaskey B.J., Kuklo T.C. High Average Power Laser Using a Transverse Flowing Liquid Host. U.S. Patent 6600766 B1, 2003.
  9. Comaskey B.J., Scheibner K.F., Ault E.R. Liquid Heat Capacity Lasers. U.S. Patent 7212558 B2, 2007.
  10. Xu Z., Su Y., Li C.-L. et al. // High Power Laser and Particle Beams. 2006. V. 18. № 12. P. 1941. http://caod.oriprobe.com/articles/11637037/Experimental_study_on_diode_pumping_inorganic_liquid_laser_output.htm
  11. Li M., Wang Y., Li C.-L. et al. // Acta Opt. Sin. 2011. V. 31. № 2. P. 135. https://doi.org/10.3788/aos201131.0214004
  12. Kuhn V., Gottwald T., Stolzenburg C. et al. // Proc. Conf. on Solid State Lasers XXIV: Technology and Devices. San Francisco: SPIE, 2015. V. 9342. 93420Y. https://doi.org/10.1117/12.2079876
  13. Roshchin A.V., Usin V.V. // Chem. Phys. 2017. V. 36. № 7. P. 3. https://doi.org/10.7868/S0207401X17070123
  14. Hari Babu Srivastava // Technol. Focus. 2015. V. 23. № 4. P. 15. http://www.drdo.gov.in/drdo/pub/techfocus/ 2015/TF_August_2015_WEB.pdf
  15. Varshney A.K., Mainuddin M., Kumar S. et al. // Opt. Laser Technol. 2022. V. 148. 107740. https://doi.org/10.1016/j.optlastec.2021.107740
  16. Varshney A.K., Mainuddin M., Singhal G., Nayak J. // Infrared Phys. Technol. 2022. V. 125. 104265. https://doi.org/10.1016/j.infrared.2022.104265
  17. Varshney A.K., Mainuddin M., Kumar S. et al. // Opt. Laser Technol. 2023. V. 167. 109811. https://doi.org/10.1016/j.optlastec.2023.109811
  18. Tikhonov G.V., Babkin A.S., Seregina E.A., Seregin A.A. // Inorg. Mater. 2017. V. 53. № 10. P. 1122. https://doi.org/10.7868/S0002337X17100165
  19. Babkin A.S., Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2018. V. 125. № 4. P. 507. https://doi.org/10.21883/OS.2018.10.46703.157-18
  20. Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2020. V. 128. № 10. P. 1441. https://doi.org/10.21883/OS.2020.10.50012.305-20
  21. Denezhkin I.A., Dyuzhov Yu.A., Kukharchuk O.F. et al. // Modern Chemical Physics. XXXIII Symposium, abstracts. Moscow: Doblest, 2021. P. 306.
  22. Dohare R.K., Mainuddin, Singhal G. // IJERECE. 2021. V. 8. № 7. P. 1. https://www.technoarete.org/common_abstract/pdf/IJERECE/v8/i7/Ext_93128.pdf
  23. Belkova N.L., Svinarenko V.A., Batyaev I.M. Active Substance for Liquid Lasers. Author’s Certificate 766504 A1 USSR // Filed 05.03.1979. Published 30.11.1994. https://www.elibrary.ru/download/elibrary_41083508_ 76119515.pdf
  24. Batyaev I.M., Kabatsky Yu.A. // Bull. Acad. Sci. USSR. Inorg. Mater. 1991. V. 27. № 9. P. 1928.
  25. Fedorov P.I., Nedev S.K. // J. Inorg. Chem. 1966. V. 11. № 10. P. 2413. http://pavel-fedorov.sitecity.ru/lalbum_2202160615.phtml?pix=0&p_ident=lalbum_2202160615.p_0702164105
  26. Buchachenko A.L. // Russ. J. Phys. Chem. B. 2024. V. 18. № 1. P. 229. https://doi.org/10.1134/S1990793124010068
  27. Seregina E.A., Tikhonov G.V. // Chem. Phys. 1996. V. 15. № 8. P. 116.
  28. Lyubimov E.I., Batyaev I.M. // J. Appl. Chem. 1972. V. 45. № 6. P. 1176.
  29. Tikhonov G.V., Seregina E.A. // Radiochemistry. 2013. V. 55. № 1. P. 29.
  30. Razumov V.F. // Chem. Phys. 2023. V. 42. № 2. P. 14. https://doi.org/10.31857/S0207401X23020139
  31. Coordination Chemistry of Rare Earth Elements / Ed. by Spitsyn V.I., Martynenko L.I. Moscow: MSU, 1979.
  32. Seregina E.A., Kabakov D.V. // Opt. Spectrosc. 2005. V. 98. № 2. P. 254.
  33. Seregina E.A., Seregin A.A., Tikhonov G.V., Podkopaev A.V. // Opt. Spectrosc. 2023. V. 131. № 3. P. 332. https://journals.ioffe.ru/articles/55382
  34. Kaminsky A.A. Laser Crystals. Moscow: Nauka, 1975.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Absorption spectra of CCl₄ (1), CCl₄–GaCl₃ (2) and CCl₄–GaCl₃–Nd³⁺ (3, 4) solutions prepared from neodymium perchlorate (3) and TFA (4).

Жүктеу (66KB)
3. Fig. 2. Absorption spectra of CCl₄–GaCl₃–Nd³⁺ solutions prepared from neodymium perchlorate (1, 2) and TFA (3–5); ([GaCl₃] : [Nd]) ᵢₙ = 8.1 (1, 2), 8.4 (3), and 2.5 (4, 5).

Жүктеу (50KB)
4. Fig. 3. Absorption of CCl₄–GaCl₃ (1) and CCl₄–GaCl₃–Nd³⁺ solutions prepared from TFA (2–6); [GaCl₃] : [Nd³⁺] = 8.4; [Nd³⁺] = 0.25 mol/L; complexation time: 2 (2), 5 (3), 9 (4), 15 (5), and 130 (6).

Жүктеу (54KB)
5. Fig. 4. Absorption bands of Nd³⁺ in CCl₄–GaCl₃–Nd³⁺ solutions prepared from TFA (1–5) and neodymium perchlorate (6); [GaCl₃] : [Nd³⁺] = 3.8 (1), 6.2 (2), 8.9 (3), 13 (4), 17 (5), and 8.1 (6); [Nd³⁺] = (0.092 ± 0.004) mol/L.

Жүктеу (176KB)
6. Fig. 5. Absorption bands of Nd³⁺ in CCl₄–GaCl₃–Nd³⁺ solution; [GaCl₃] : [Nd³⁺] = 3.8; [Nd³⁺] = 0.095 mol/l; complexation time: 1 (1), 7 (2), 51 (3), 80 (4) and 93 (5).

Жүктеу (173KB)
7. Fig. 6. Kinetic dependences of Nd³⁺ complexation in CCl₄–GaCl₃–Nd³⁺ solutions; [GaCl₃] : [Nd³⁺] = 2.5 (1), 4.0 (2), 4.8 (3), 5.9 (4), 6.7 (5), 8.4 (6), 10.4 (7), 10.5 (8), 13 (9); the ratio ([GaCl₃] : [Nd³⁺])in is the initial one.

Жүктеу (45KB)
8. Fig. 7. Kinetic dependences of Nd³⁺ luminescence quenching in CCl₄–GaCl₃–Nd³⁺ solutions (curve numbers correspond to sample numbers from Table 2).

Жүктеу (76KB)
9. Fig. 8. Kinetic dependences of Nd³⁺ luminescence quenching in CCl₄–GaCl₃–Nd³⁺ solutions prepared from neodymium TFA; [GaCl₃] : [Nd³⁺] = 4.8 (1), 5.3 (2, 3), 5.9 (4) and 8.4 (5, 6); [Nd³⁺] ≈ (0.27 ± 0.03) mol/L.

Жүктеу (45KB)
10. Fig. 9. Structure of levels and transitions between them for Nd³⁺ in CCl₄–GaCl₃–Nd³⁺: solid arrows are radiative transitions, dashed arrows are nonradiative transitions.

Жүктеу (22KB)
11. Fig. 10. Luminescence spectrum of Nd³⁺ in CCl₄–GaCl₃–Nd³⁺ solution.

Жүктеу (25KB)
12. Fig. 11. Absorption spectra of CCl₄–GaCl₃–Nd³⁺ solutions prepared from TFA (1) and neodymium perchlorate (2), τ = 0.07 ms, SOCl₂–GaCl₃–Nd³⁺, τ = 0.3 ms (3), and the wavelength of the luminescent transition ⁴F₃/₂ → ⁴I₁₅/₂ of neodymium(III) (4).

Жүктеу (47KB)

© Russian Academy of Sciences, 2025