Elastic conductivity of germanene nanoribbons with acceptor defects

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

This work is devoted to the theoretical researchers of the germanene nanoribbons piezoresistivity of various structural modifications (arm-chair and zig-zag) with the acceptor structural defects. Gallium atoms were chosen as impurities. A phenomenological expression for the band structure of nanoribbons deformed by tension and compression is proposed. The dependences of the longitudinal component of the elastic conductivity tensor on the relative deformation of tension and compression, the concentration of impurities and the width of the nanoribbon are analyzed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Lebedeva

Volgograd State University

Хат алмасуға жауапты Автор.
Email: lebedeva_os@volsu.ru
Ресей, Volgograd

N. Lebedev

Volgograd State University

Email: lebedeva_os@volsu.ru
Ресей, Volgograd

A. Chibrikov

Volgograd State University

Email: lebedeva_os@volsu.ru
Ресей, Volgograd

E. Shamina

Volgograd State Medical University

Email: lebedeva_os@volsu.ru
Ресей, Volgograd

Әдебиет тізімі

  1. Antonova I.V. // Phys. Usp. 2022. V. 192. № 6. P. 609. https://doi.org/10.3367/UFNr.2021.05.038984
  2. Morozov S.V., Novoselov K.S., Geim A.K. // Phys. Usp. 2008. V. 51. P. 744. https://doi.org/10.3367/UFNr.0178.200807i.0776
  3. Lozovik Yu.E., Merkulova S.P., Sokolik A.A. // Phys. Usp. V. 51. P. 727. https://doi.org/10.3367/UFNr.0178.200807h.0757
  4. Chernozatonskii L.A., Sorokin P.B., Artukh A.A. // Russ. Chem. Rev. 2014. V. 83. P. 251. https://doi.org/10.1070/RC2014v083n03ABEH004367
  5. Lemme M.C. // Solid State Phenomena. 2009. V. 156. P. 499. https://doi.org/10.4028/www.scientific.net/SSP.156-158.499
  6. Lebe`gue S., Bjoerkman T., Klintenberg M. et al. // Phys. Rev. X. 2013. V. 3. 031002. https://doi.org/10.1103/PhysRevX.3.031002
  7. Acun A., Zhang L., Bampoulis P., et al. // J. Phys.: Condensed Matter. 2015. V. 27. № 443002. https://doi.org/10.1088/0953-8984/27/44/443002
  8. Behzad S. // J. Electron Spectroscopy and Related Phenomena. 2018. V. 229. P. 13. https://doi.org/10.1016/j.elspec.2018.09.003
  9. Ould M.L., Hachimi A.G., Boujnah M., Benyoussef A., Kenz A. // Optik. 2018. V. 158. P. 693. https://doi.org/10.1016/j.ijleo.2017.12.089
  10. Kaloni T.P., Schwingenschlögl U. // Chem. Phys. Lett. 2013. V. 583. P. 137. https://doi.org/10.1016/j.cplett.2013.08.001
  11. Mortazavi B., Rahaman O., Makaremi M., et al. // Physica E: Low-dimensional Systems and Nanostructures. 2017. V. 87. P. 228. https://doi.org/10.1016/j.physe.2016.10.047
  12. Kazemlou V. Phirouznia A. // Superlattices Microstruct. 2019. V. 128. P. 23. https://doi.org/10.1016/j.spmi.2019.01.003
  13. Voznyakovsky A.A., Wozniakovsky A.P., Kidalov S.V., Zavarinsky V.I. // Russ. J. Phys. Chem. B. 2021. V. 15. № 3. P. 377. https://doi.org/10.31857/S0207401X21060169
  14. Neskoromnaya E.A., Babkin A.V., Zakharchenko E.A., Morozov Yu.G., Kabachkov E.N., Shulga Yu.M. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 818. https://doi.org/10.31857/S0207401X23070130
  15. Rybkin A.G., Tarasov A.V., Gogina A.A., Eryzhenkov A.V., Rybkina A.A. // JETP Lett. 2023. V. 117. Is. 8. P. 626. https://doi.org/10.31857/S1234567823080116
  16. Galashev A.E. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 113. https://doi.org/10.31857/S0207401X2302005X
  17. Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // St. Petersburg State Polytechnical University J. Physics and Mathematics. 2019. V. 12. P. 38. https://doi.org/10.18721/JPM.12404
  18. Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // Scientific and technical bulletin of SPbSPU. Physical and mathematical sciences. 2021. V. 14. P. 8. https://doi.org/10.18721/JPM.14101
  19. Physics of graphene / Eds. Aoki H., Dresselhaus M.S. Cham: Springer, 2014. (NanoScience and Technology).
  20. Bir G.L., Pikus G.E. Symmetry and strain-induced effects in semiconductors. New York: John Wiley & Sons, Inc., 1974.
  21. Lebedeva O.S., Lebedev N.G. // St. Petersburg State Polytechnical University J. Physics and Mathematics. 2014. V. 1. P. 26.
  22. Lebedeva O.S., Lebedev N.G. // St. Petersburg State Polytechnical University Journal. 2014. V. 2. P. 149.
  23. Lebedeva O.S., Lebedev N.G. // Russian Journal of Physical Chemistry B: Focus on Physics. 2014. V. 8. № 5. P. 745. https://doi.org/10.7868/S0207401X14100070
  24. Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // Mathematical Physics and Computer Simulation. 2018. V. 21. P. 53.
  25. Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // J. Phys.: Condensed Matter. 2020. V. 32. 145301. https://doi.org/10.1088/1361-648X/ab5f45
  26. Lebedeva O.S., Lebedev N.G., Lyapkosova I.A. // Russ. J. Phys. Chem. A. 2020. V. 94. P. 1232. https://doi.org/10.31857/S004445372008018X
  27. Merinov V.B., Domnin V.A. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 215. https://doi.org/10.31857/S0207401X23020127
  28. Izyumov Ju.A., Chashhin N.I., Alekseev D.S. Correlated Systems. Method of Generating Functional [in Russian]. Moscow: Regulyarnaya i Khaoticheskaya Dinamika, 2006.
  29. Pak A.V., Lebedev N.G. // Russ. J. Phys. Chem. A. 2013. V. 87. № 6. P. 979. https://doi.org/10.1134/S0036024413060204
  30. Stepanov N.F. Quantum mechanics and quantum chemistry [in Russian]. Moscow: Mir, Moscow State University Publishing, 2001.
  31. Kvasnikov I.A. Thermodynamics and statistical physics, in 4 vols., V. 4: Quantum Statistics [in Russian]. Moscow: KomKniga Publ., 2005.
  32. Alankina A.V., Lebedeva O.S., Lebedev N.G. // Materials Science, Shaping Technologies and Equipment 2023 (ICMSSTE 2023). Materials of the international scientific and practical conference. Simferopol, 2023. P. 209.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Fragment of the structure of armchair germanene nanoribbon deformed by longitudinal stretching: Δi (i = 1, 2, 3) – vectors of interatomic distances; a1, a2 – vectors of the main translations; α – angle between vectors a1 and a2

Жүктеу (70KB)
3. Fig. 2. Band structure of p-conducting 17-AGeNR (a, b) and p-semiconductor 18-AGeNR (c, d): a, c – δ = 0, Nd = 1000; b, d – δ = 0.04, Nd = 1000. The Fermi level is shown by dotted lines.

Жүктеу (840KB)
4. Fig. 3. Dependences of the longitudinal component M of the elastic conductivity tensor of 17-AGeNR (a) and 18-AGeNR (b, c) chairlifts on the strain δ at different defect concentrations Nd: a – 1 (1), 10 (2), 100 (3), 1000 (4), 10000 (5); b – 0 (1), 1 (2), 10 (3); c – 100 (1), 1000 (2), 10000 (3).

Жүктеу (295KB)
5. Fig. 4. Dependencies similar to those shown in Fig. 2, but for 100-AGeNRs (a) and 200-AGeNRs (b) at different concentrations of Nd defects: 1 (1), 10 (2), 100 (3), 1000 (4), 10000 (5).

Жүктеу (242KB)
6. Fig. 5. Dependences of the longitudinal component M of the elastic conductivity tensor of zigzag 17-ZGeNRs (a) and 18-ZGeNRs (b) on the value of relative deformation δ at different defect concentrations Nd: 1 (1), 10 (2), 100 (3), 1000 (4), 10,000 (5).

Жүктеу (284KB)
7. Fig. 6. Changes in the chemical potential ∆µ of conducting 17-AGeNRs (a) and semiconducting 18-AGeNRs (b) on the value of relative deformation δ at different defect concentrations Nd: 1 (1), 10 (2), 100 (3), 1000 (4), 10000 (5).

Жүктеу (265KB)

© Russian Academy of Sciences, 2024