Study of Fluorescence Quenching by Bilirubin of a Carbocyanine Dye in Complex with DNA. Effect of Cu2+ Additives

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of bilirubin on the spectral fluorescence properties of the cationic thiacarbocyanine dye Cyan 2 in the presence of DNA was studied. The Cyan 2 dye forms a non-covalent complex with DNA, which leads to an increase in the fluorescence of the dye. Interaction with bilirubin leads to effective quenching of dye fluorescence in complex with DNA (static mechanism), which can be used to construct a spectral-fluorescent sensor for bilirubin. The results of in vitro experiments are illustrated by in silico molecular docking experiments. The effect of Cu2+ ion additives can further enhance the quenching of dye fluorescence by bilirubin. Effective quenching constants and detection limits of bilirubin using the Cyan 2–DNA system (LOD and LOQ) are determined.

Texto integral

Acesso é fechado

Sobre autores

P. Pronkin

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: pronkinp@gmail.com
Rússia, Moscow

A. Tatikolov

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences

Email: pronkinp@gmail.com
Rússia, Moscow

Bibliografia

  1. Pronkin P.G., Tatikolov A.S. // Molecules. 2022. V. 27. № 19. P. 6367. https://doi.org/10.3390/molecules27196367
  2. Tatikolov A.S., Pronkin P.G., Shvedova L.A., Panova I.G. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 900. https://doi.org/10.1134/S1990793119060290
  3. Kim S.Y., Park S.C. // Front. Pharmacol. 2012. V. 3. P. 45. https://doi.org/10.3389/fphar.2012.00045
  4. Tatikolov A.S., Panova I.G. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1473. https://doi.org/10.1134/S1990793124701173
  5. Soto Conti C.P. // Arch. Argent. Pediatr. 2021. V. 119. № 1. P. e18. https://doi.org/10.5546/aap.2021.eng.e18
  6. Tatikolov A.S., Pronkin P.G., Panova I.G. // Biophys. Chem. 2025. V. 318. P. 107378. https://doi.org/10.1016/j.bpc.2024.107378
  7. Singla N., Ahmad M., Mahajan V., Singh P., Kumar S. // Sens. Diagn. 2023. V. 2. P. 1574. http://dx.doi.org/10.1039/D3SD00157A
  8. Karmakar S., Das T.K., Kundu S., Maiti S., Saha A. // ACS Appl. Bio Mater. 2020. V. 3. P. 8820. https://doi.org/10.1021/acsabm.0c01165
  9. Xiao W., Liu J., Xiong Y., et al. // Anal. Bioanal. Chem. 2021. V. 413. P. 7009. https://doi.org/10.1007/s00216-021-03660-6
  10. Speck W., Behrman R. // Pediatr. Res. 1974. V. 8. P. 451. https://doi.org/10.1203/00006450-197404000-00665
  11. Velapoldi R.A., Menis O. // Clinical Chem. 1971. V. 17. № 12. P. 1165. PMID: 5118155
  12. Asad S.F., Singh S., Ahmad A., Hadi S.M. // Biochim. Biophys. Acta. 1999. V. 1428. № 2–3. P. 201. https://doi.org/10.1016/s0304-4165(99)00075-6
  13. Asad S.F., Singh S., Ahmad A., Hadi S.M. // Toxicology Lett. 2002. V. 131. № 3. P. 181. https://doi.org/10.1016/s0378-4274(02)00031-0
  14. Akimkin T.M., Tatikolov A.S., Yarmoluk S.M. // High Energy Chem. 2011. V. 45. P. 222. https://doi.org/10.1134/S0018143911030027
  15. Y armoluk S.M., Lukashov S.S., Losytskyy M.Y., Akerman B., Kornyushyna O.S. // Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy. 2002. V. 58. № 14. P. 3223. https://doi.org/10.1016/S1386-1425(02)00100-2
  16. Xu C., Losytskyy M.Y., Kovalska V.B., Kryvorotenko D.V., Yarmoluk S.M., McClelland S., Bianco P.R. // J. Fluoresc. 2007. V. 17. P. 671. https://doi.org/10.1007/s10895-007-0215-z
  17. Tatikolov A.S., Akimkin T.M., Pronkin P.G., Yarmoluk S.M. // Chem. Phys. Lett. 2013. V. 556. P. 287. https://doi.org/10.1016/j.cplett.2012.11.097
  18. Mukerjee P., Ostrow J.D., Tiribelli C. // BMC Biochem. 2002. V. 3. P. 17. https://doi.org/10.1186/1471-2091-3-17
  19. Baguley B.C., Falkenhaug E.M. // Nucleic Acids Res. 1978. V. 5. № 1. P. 161. https://doi.org/10.1093/nar/5.1.161
  20. Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. Springer, 2006. 954 p.
  21. Hubaux A., Vos G. // Anal. Chem. 1970. V. 42. No. 8. P. 849. https://doi.org/10.1021/ac60290a013
  22. MacDougall D., Crummett W.B. et al. // Anal. Chem. 1980. V. 52. P. 2242. https://doi.org/10.1021/ac50064a004
  23. Valdes-Tresanco M.S., Valdes-Tresanco M.E., Valiente P.A., Moreno E. // Biol. Direct. 2020. V. 15. P. 12. https://doi.org/10.1186/s13062-020-00267-2
  24. Drew H.R., Wing R.M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R.E. // Proc. Natl. Acad. Sci. USA. 1981. V. 78. P. 2179. https://doi.org/10.1073/pnas.78.4.2179
  25. Dautant A., Langlois d’Estaintot B., Gallois B., Brown T., Hunter W.N. // Nucleic Acids Res. 1995. V. 23. P. 1710. https://doi.org/10.1093/nar/23.10.1710
  26. Yang Z., Lasker K., Schneidman-Duhovny D., Webb B., Huang C.C., Pettersen E.F., Goddard T.D., Meng E.C., Sali A., Ferrin T.E. // J. Struct. Biol. 2012. V. 179. P. 269. https://doi.org/10.1016/j.jsb.2011.09.006
  27. Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. // J. Cheminformatics. 2012. V. 4. P. 1. https://doi.org/10.1186/1758-2946-4-17
  28. Pronkin P.G., Shvedova L.A., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 369. https://doi.org/10.1134/S1990793124020155
  29. Pronkin P.G., Tatikolov A.S. // High Energy Chemistry. 2009. V. 43. № 6. P. 471. https://doi.org/10.1134/S0018143909060101
  30. Pronkin P.G., Tatikolov A.S. // High Energy Chemistry. 2011. V. 45. № 2. P. 140. https://doi.org/10.1134/S0018143911020123
  31. Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2022. V. 16. № 1. P. 1. https://doi.org/10.1134/S1990793122010262
  32. Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 25. https://doi.org/10.1134/S1990793121010267
  33. Yarmoluk S.M., Lukashov S.S., Ogul’chansky T.Y., Losytskyy M.Y., Kornyushyna O.S. // Biopolymers (Biospectroscopy). 2001. V. 62. P. 219. https://doi.org/10.1002/bip.1016
  34. Galhano J., Marcelo G.A., Santos H.M., Capelo-Martínez J.L., Lodeiro C., Oliveira E. // Chemosensors. 2022. V. 10. P. 80. https://doi.org/10.3390/chemosensors10020080
  35. Hanmeng O., Chailek N., Charoenpanich A. et al. // Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy. 2020. V. 240. P. 118606. https://doi.org/10.1016/j.saa.2020.118606
  36. Chen X., Nam S.W., Kim G.H. et al. // Chem. Commun. 2010. V. 46. № 47. P. 8953. http://dx.doi.org/10.1039/C0CC03398G
  37. Li J., Ge J., Zhang Z., Qiang J., Wei T., Chen Y., Li Z., Wang F., Chen X. // Sensor Actuat B-Chem. 2019. V. 296. P. 126578. https://doi.org/10.1016/j.snb.2019.05.055
  38. Krishna R.M., Gupta S.K. // Bull. Magnetic Resonance. 1994. V. 16. № 3. P. 239.
  39. Taniguchi M., Lindsey J.S. // J. Photochem. Photobiol. C. 2023. V. 55. P. 100585. https://doi.org/10.1016/j.jphotochemrev.2023.100585
  40. Ghosh D., Chattopadhyay N. // J. Luminesc. 2015. V. 160. P. 223. https://doi.org/10.1016/j.jlumin.2014.12.018
  41. Achyuthan K.E., Bergstedt T.S., Chen L. // J. Materials Chem. 2005. V. 15. № 27–28. P. 2648. https://doi.org/10.1039/b501314c
  42. Poletaev A.I. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1168. https://doi.org/10.1134/S1990793123050093
  43. Tereshkin E.V., Tereshkina K.B., Loiko N.G. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1604. https://doi.org/10.1134/S199079312470146X
  44. Razumov W.F. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 36. https://doi.org/10.1134/S199079312301027X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structures of the studied compounds - Cyan 2 dye and bilirubin (BR).

Baixar (126KB)
3. Fig. 2. a - Normalised absorption spectra of Cyan 2 dye (cCyan 2 = 1.5 μM) in phosphate buffer solution at different concentrations of DNA, BR and Cu2+: cDNA = 0 (curve 1), 20 (2, 4, 5, 6), 140 μM (3); cBR = 0 (1-3), 3 μM (4-6); cCu2+ = 0 (1-4), 6.3 μM (5 and 6); spectrum 5 corresponds to the deaerated sample; b - dependences of the molar extinction coefficient εabs (1), relative width of spectral curves in the absorption spectra Wh/2 (2), position of the maximum λabs (3), fluorescence intensity Ifl, (4) of Cyan 2 dye on the cDNA/cCyan 2 ratio in the absence of quenching; c - normalised fluorescence spectra of Cyan 2 (1-4; λex = 540 nm) at different concentrations of BR: cBR = 0 (curve 1), 0.11 (2), 1.2 (3), 3.3 μM (4). Inset shows the dependence of fluorescence quenching of Cyan 2 dye (cCyan 2 = 1.5 μM, λex = 505 nm, λreg = 565 nm) on BR concentration in Stern-Folmer coordinates (1) and linear analytical dependence using the Stern-Folmer equation (2).

Baixar (385KB)
4. Fig. 3. Results of molecular docking of Cyan 2 dye (a, b) and bilirubin (c, d) with double-stranded DNA: complex in the small trough (a, c; 1BNA.pdb) and intercalation complex (b, d; 198D.pdb).

Baixar (584KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025