Heterocyclic molecules fragmentation due to single electron capture by doubly charged ions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The of adenine (Ade, C5H5N5) and cyclodiglycine (DKP, C4H6N2O2) ions fragmentation formed in the singly electron capture during the interaction of molecules in the gas phase with C2+ and O2+ ions with an energy of 12 keV have been studied. The experimentally observed dependence of the relative fragmentation cross section of molecular ions on the type of projectile is qualitatively explained within the framework of the quasi-molecular model. Using the multi-configuration method of self-consistent field in complete active space (CASSCF), calculations of the fragmentation reaction paths of Ade+ and DKP+ ions were performed. The calculated appearance energies are in good agreement with the available experimental data.

Sobre autores

A. Basalaev

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: a.basalaev@mail.ioffe.ru
Rússia, Saint Petersburg

V. Kuz’michev

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Rússia, Saint Petersburg

M. Panov

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Rússia, Saint Petersburg

K. Simon

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Rússia, Saint Petersburg

O. Smirnov

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: a.basalaev@mail.ioffe.ru
Rússia, Saint Petersburg

Bibliografia

  1. H.-W. Jochims, M. Schwell, H. Baumgärtel et al., Chem. Phys., 314, 263 (2005). https://doi.org/10.1016/j.chemphys.2005.03.008
  2. S. Pilling, A. F. Lago, L. H. Coutinho et al., Rapid Commun. Mass Spectrom., 21, 3646 (2007). https://doi.org/10.1002/rcm.3259
  3. D. Barreiro-Lage, P. Bolognesi, J. Chiarinelli et al., J. Phys. Chem. Lett., 12, 7379 (2021). https://doi.org/10.1021/acs.jpclett.1c01788
  4. J.D. Chiarinelli, D. Barreiro-Lage, P. Bolognesi et al., Phys. Chem. Chem. Phys., 24, 5855 (2022). https://doi.org/10.1039/D1CP05811H
  5. D. Barreiro-Lage, J. Chiarinelli, P. Bolognesi et al., Phys. Chem. Chem. Phys., 25, 15635 (2023). https://doi.org/10.1039/D3CP00608E
  6. S. Feil, K. Gluch, S. Matt-Leubner et al., J. Phys. B: At. Mol. Opt. Phys., 37, 3013 (2004). https://doi.org/10.1088/0953-4075/37/15/001
  7. M.M. Dawley, K. Tanzer, W.A. Cantrell et al., Phys. Chem. Chem. Phys., 16, 25039 (2014). https://doi.org/10.1039/C4CP03452J
  8. P.J. M. van der Burgt, S. Finnegan, S. Eden. Eur. Phys. J. D., 69, 173 (2015). https://doi.org/10.1140/epjd/e2015-60200-y
  9. B. Li, X. Ma, X. L. Zhu et al., J. Phys. B: At. Mol. Opt. Phys., 42, 075204 (2009). https://doi.org/10.1088/0953-4075/42/7/075204
  10. J. de Vries, R. Hoekstra, R. Morgenstern et al., J. Phys. B: At. Mol. Opt., Phys., 35, 4373 (2002). https://doi.org/10.1088/0953-4075/35/21/304
  11. J. Tabet, S. Eden, S. Feil et al., Int. J. Mass Spectr., 292, 53 (2010). https://doi.org/10.1016/j.ijms.2010.03.002
  12. V.V. Afrosimov, A.A. Basalaev, O.S. Vasyutinskii et al., Eur. Phys. J. D, 69, 3 (2015). https://doi.org/10.1140/epjd/e2014-50435-5
  13. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys. Lett., 48 (9), 11 (2022). https://doi.org/10.21883/TPL.2022.09.55073.19238
  14. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Radiat. Phys. Chem., 193, 109984 (2022). https://doi.org/10.1016/j.radphyschem.2022.109984
  15. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys., 67 (7), 812 (2022). https://doi.org/10.21883/TP.2022.07.54477.309-21
  16. G.M.J. Barca, C. Bertoni, L. Carrington et al., J. Chem. Phys. 152, 154102 (2020). https://doi.org/10.1063/5.0005188
  17. Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 15, 782 (2021). https://doi.org/10.1134/S1990793121050134
  18. Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 16, 543 (2022). https://doi.org/10.1134/S1990793122030149
  19. G.M. Khrapkovskii, I.V. Aristov, D.L. Egorov et al., Rus. J. Phys. Chem. B,. 16, 862 (2022). https://doi.org/10.1134/S1990793122040066
  20. A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Rus. J. Phys. Chem. B, 17, 1025 (2023) https://doi.org/10.1134/S1990793123050172
  21. N.S. Hush, A.S. Cheung. Chem. Phys. Lett., 34, 11 (1975).
  22. C.T. Hwang, C.L. Stumpf, Y.-Q. Yu et al., Int. J. Mass Spectrom., 182/183. 253 (1999).
  23. N. Russo, M. Toscano, A. Grand. J. Comput. Chem., 21, 1243 (2000).
  24. R. Improta, G. Scalmani, V. Barone, Int. J. Mass Spectrom., 201, 321 (2000).
  25. R.K. Janev, L.P. Presnyakov, Phys. Rep., 70, 1 (1981) https://doi.org/10.1016/0370-1573(81)90161-7
  26. J. Lin, C.Yu, S. Peng, I. Akiyama et al., J. Am. Chem. Soc.. 102, 4627 (1980).
  27. A.B. Trofimov, J. Schirmer, V.B. Kobychev et al., J. Phys. B: At. Mol. Opt. Phys. 39, 305 (2006). https://doi.org/10.1088/0953-4075/39/2/007
  28. A.P. W. Arachchilage, F. Wang, V. Feyer et al., J. Chem. Phys., 133, 174319 (2010). https://doi.org/10.1063/1.3499740
  29. J. Franz, F. A. Gianturco, Eur. Phys. J. D, 68, 279 (2014). https://doi.org/10.1140/epjd/e2014-50072-0
  30. A. Kramida, Yu. Ralchenko, J. Reader et al., NIST Atomic Spectra Database (ver. 5.9). (2021). https://doi.org/10.18434/T4W30F

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024