Exciton Binding Energies in Biphenyl Derivatives with Ferrocenyl and Fluorine-Containing Germyl Substituents

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

To increase the efficiency of organic photovoltaic devices, it is necessary to search for new promising compounds that provide efficient charge separation during absorption in the optical region of the spectrum. As such compounds, biphenyl derivatives with ferrocenyl and fluorine-containing germyl substituents have been studied in the present work. The DFT and TD-DFT methods (B3LYP, CAM-B3LYP, PBE0, wB97XD) have been used to study the structures and energies of excited states of these derivates and to estimate the exciton binding energies in materials based on them in vacuum and condensed matter. For a number of compounds, the obtained exciton binding energies are close to zero, and in a separate case even less than zero, which demonstrates the prospect of their synthesis and use.

Texto integral

Acesso é fechado

Sobre autores

D. Alyoshin

Lobachevsky Nizhny Novgorod State University

Autor responsável pela correspondência
Email: aleshindan2@gmail.com
Rússia, Nizhny Novgorod

N. Ermolaev

Lobachevsky Nizhny Novgorod State University

Email: aleshindan2@gmail.com
Rússia, Nizhny Novgorod

S. Panteleev

Lobachevsky Nizhny Novgorod State University

Email: aleshindan2@gmail.com
Rússia, Nizhny Novgorod

E. Suleymanov

Lobachevsky Nizhny Novgorod State University

Email: aleshindan2@gmail.com
Rússia, Nizhny Novgorod

S. Ignatov

Lobachevsky Nizhny Novgorod State University

Email: aleshindan2@gmail.com
Rússia, Nizhny Novgorod

Bibliografia

  1. Milichko V.A., Shalin A.S., Mukhin I.S. et al. // Usp. Fiz. Nauk. 2016. V. 186. № 8. P. 801. https://doi.org/10.3367/UFNr.2016.02.037703
  2. Scharber M.C. // Adv. Mater. 2016. V. 28. № 10. P. 1994. https://doi.org/10.1002/adma.201504914
  3. Hou J., Inganäs O., Friend R.H. et al. // Nat. Mater. 2018. V. 17. № 2. P. 119. https://doi.org/10.1038/nmat5063
  4. Zhang G., Lin F.R., Qi F. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14180. https://doi.org/10.1021/acs.chemrev.1c00955
  5. Price M.B., Hume P.A., Ilina A. et al. // Nat. Commun. 2022. V. 13. № 1. P. 2827. https://doi.org/10.1038/s41467-022-30127-8
  6. Zhang X.-X., Yu X.-F., Xiao B. // J. Phys. Chem. A. 2023. V. 127. № 44. P. 9291. https://doi.org/10.1021/acs.jpca.3c06000
  7. Solak E.K., Irmak E. // RSC Adv. 2023. V. 13. № 18. P. 12244. https://doi.org/10.1039/D3RA01454A
  8. Al-Taher A.H., Al-Badry L.F., Semiromi E.H. // Russ. J. Phys. Chem. B. 2021. V. 15. № S1. P. S1. https://doi.org/10.1134/S1990793121090025
  9. Yu Q.-C., Fu W.-F., Wan J.-H. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 8. P. 5798. https://doi.org/10.1021/am5006223
  10. Brédas J.-L., Norton J.E., Cornil J. et al. // Acc. Chem. Res. 2009. V. 42. № 11. P. 1691. https://doi.org/10.1021/ar900099h
  11. Lemaur V., Steel M., Beljonne D. et al. // J. Amer. Chem. Soc. 2005. V. 127. № 16. P. 6077. https://doi.org/10.1021/ja042390l
  12. Kaake L.G., Jasieniak J.J., Bakus R.C. et al. // Ibid. 2012. V. 134. № 48. P. 19828. https://doi.org/10.1021/ja308949m
  13. Vandewal K., Mertens S., Benduhn J., Liu Q. // J. Phys. Chem. Lett. 2020. V. 11. № 1. P. 129. https://doi.org/10.1021/acs.jpclett.9b02719
  14. Lukin L.V. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1300. https://doi.org/10.1134/S1990793123060180
  15. Kronik L., Neaton J.B. // Annu. Rev. Phys. Chem. 2016. V. 67. № 1. P. 587. https://doi.org/10.1146/annurev-physchem-040214- 121351
  16. Dimitriev O.P. // Chem. Rev. 2022. V. 122. № 9. P. 8487. https://doi.org/10.1021/acs.chemrev.1c00648
  17. Gorokhov V.V., Knox P.P., Korvatovsky B.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 571. https://doi.org/10.1134/S199079312303020X
  18. Cherepanov D.A., Milanovsky G.E., Aybush A.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 584. https://doi.org/10.1134/S1990793123030181
  19. Bazlov S.V., Feskov S.V., Ivanov A.I. // Russ. J. Phys. Chem. B. 2017. V. 11. № 2. P. 242. https://doi.org/10.1134/S1990793117020026
  20. Cherepanov D.A., Milanovsky G.E., Nadtochenko V.A. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 594. https://doi.org/10.1134/S1990793123030193
  21. Ermolaev N.L., Lenin I.V., Fukin G.K. et al. // J. Organomet. Chem. 2015. V. 797. P. 83. https://doi.org/10.1016/j.jorganchem.2015.07.027
  22. Ermolaev N.L., Fukin G.K., Shavyrin A.S. et al. // Ibid. 2023. V. 983. P. 122535. https://doi.org/10.1016/j.jorganchem.2022.122535
  23. Chuhmanov E.P., Ermolaev N.L., Plakhutin B.N., Ignatov S.K. // Comput. Theor. Chem. 2018. V. 1123. P. 50. https://doi.org/10.1016/j.comptc.2017.11.007
  24. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.01. Wallingford CT: Gaussian Inc., 2009.
  25. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999. https://doi.org/10.1021/cr9904009
  26. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
  27. Gregg B.A. // J. Phys. Chem. B. 2003. V. 107. № 20. P. 4688. https://doi.org/10.1021/jp022507x
  28. Hains A.W., Liang Z., Woodhouse M.A. et al. // Chem. Rev. 2010. V. 110. № 11. P. 6689. https://doi.org/10.1021/cr9002984
  29. Sun H., Hu Z., Zhong C. et al. // J. Phys. Chem. C. 2016. V. 120. № 15. P. 8048. https://doi.org/10.1021/acs.jpcc.6b01975
  30. Benatto L., Koehler M. // Ibid. 2019. V. 123. № 11. P. 6395. https://doi.org/10.1021/acs.jpcc.8b12261
  31. Zhu L., Yi Y., Wei Z. // Ibid. 2018. V. 122. № 39. P. 22309. https://doi.org/10.1021/acs.jpcc.8b07197
  32. Bredas J.-L. // Mater. Horiz. 2014. V. 1. № 1. P. 17. https://doi.org/10.1039/C3MH00098B
  33. Zhu L., Zhang J., Guo Y. et al. // Angew. Chem. 2021. V. 133. № 28. P. 15476. https://doi.org/10.1002/ange.202105156

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structural formulae of the studied compounds.

Baixar (65KB)
3. Fig. 2. Schematic explaining the determination of the exciton EB binding energy: S0 and S1 are the ground and first excited (singlet) states of a neutral molecule, EIP and EEA are the ionisation potential and electron affinity, Efund and Eopt are the fundamental and optical slits.

Baixar (57KB)
4. Fig. 3. Optimised geometry of neutral structures (B3LYP/6-31G(d,p)). Numbers are bond lengths in Å.

Baixar (223KB)
5. Fig. 4. Shapes of molecular orbitals of the studied compounds that provide the strongest charge separation during electronic excitation (B3LYP/6-31G(d,p) calculation).

Baixar (500KB)
6. Fig. 5. VZMO and NSMO energy values of the studied compounds calculated within the DFT framework using different functionals.

Baixar (439KB)
7. Fig. 6. Influence of different calculation methods and molecular environment conditions on the energy values of the lowest excited states of the studied compounds.

Baixar (235KB)
8. Fig. 7. Absorption spectra of compounds 1-4 obtained by different calculation methods for the gas phase: B3LYP (a), wB97XD (b), CAM-B3LYP (c), PBE0 (d).

Baixar (522KB)
9. Fig. 8. DFT calculations of the exciton binding energy of compounds 1-4 using different functionals: EB - gap method calculation; EC - Coulomb interaction calculation; EC (NTO) - Coulomb interaction calculation between natural transition orbitals.

Baixar (271KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025