Investigation of the Influence of UV Radiation on Compositions of Polylactide with Graphite Nanoplates
- 作者: Gasymov M.M.1, Rogovina S.Z.1, Kuznetsova O.P.1, Perepelitsyna E.O.2, Shevchenko V.G.1,3, Lomakin S.M.1,4, Berlin A.A.1
-
隶属关系:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Federal State Research Center for Chemical Physics and Medical Chemistry, Russian Academy of Sciences
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- 期: 卷 43, 编号 3 (2024)
- 页面: 112-121
- 栏目: Chemical physics of polymeric materials
- URL: https://medjrf.com/0207-401X/article/view/674979
- DOI: https://doi.org/10.31857/S0207401X24030121
- EDN: https://elibrary.ru/VFNIAA
- ID: 674979
如何引用文章
详细
Composites of polyether polylactide (PLA) synthesized from natural raw materials with graphite nanoplates (GNP), which represent a new type of composite materials based on biodegradable polymers, were obtained by solid-phase method under the action of shear deformations. The porosity of composites was evaluated and their electrical and mechanical properties were studied. The effect of UV radiation on the molecular weight and molecular weight distribution of PLA in PLA-GNP composites of different compositions was investigated using the method of excision chromatography (EC), and the effect of the GNP nanofiller content on the change of their mechanical characteristics in the process of radiation was shown.
全文:

作者简介
M. Gasymov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
俄罗斯联邦, Moscow
S. Rogovina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: S.Rogovina@mail.ru
俄罗斯联邦, Moscow
O. Kuznetsova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
俄罗斯联邦, Moscow
E. Perepelitsyna
Federal State Research Center for Chemical Physics and Medical Chemistry, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
俄罗斯联邦, Chernogolovka
V. Shevchenko
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
俄罗斯联邦, Moscow; Moscow
S. Lomakin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
俄罗斯联邦, Moscow; Moscow
A. Berlin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
俄罗斯联邦, Moscow
参考
- Chieng B.W., Ibrahim N.A., Yunus W.M.Z.W. et al. // Polymer. 2014. V. 6. P. 2232; https://doi.org/10.3390/polym6082232
- Papageorgiou D.J., Kinloch I.A., Young R.J. // Prog. Mater. Sci. 2017. V. 90. P. 75; https://doi.org/10.1016/j.pmatsci.2017.07.004
- Jem K.J., van der Pol J.F., de Vos S. Microbial Lactic Acid, Its Polymer Poly (lactic acid) and their industrial Applications. Plastics from Bacteria: Natural Functions and Applications. Gorinchem, The Netherlands: Royal Society of Chemistry, 2010; https://doi.org/10.1007/978-3-642-03287-5_13
- Garlotta D.A. // J. Polym. Environ. 2001. V. 19. Р. 63; https://doi.org/10.1023/A:1020200822435
- Jimenez A., Peltzer M., Ruseckaite R. Poly (lactic acid) Science and Technology Processing, Properties, Additives and Applications. Cambridge: Royal Society of Chemistry, 2015; https://doi.org/10.1039/9781782624806-FP005
- Zhang M., Ding X., Zhan Y., Wang Y., Wang X. // J. Hazard. Mater. 2020. V. 384. P. 121260; https://doi.org/10.1016/j.jhazmat.2019.121260
- Tawiah B., Bin Y., Richard K.K. Y. et al. // Carbon. 2019. V. 150. P. 8; https://doi.org/10.1016/j.carbon.2019.05.002
- Rogovina S.Z., Gasymov M.M., Lomakin S.M., Kuznetsova O.P. et al. // Mech. Compos. Mater. 2023. V. 58. P. 845; https://doi.org/10.1007/s11029-023-10073-2
- Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Polym. Cryst. 2022. V. 2022. P. 1; https://doi.org/10.1155/2022/4367582
- Hideto T., Hiroaki S., Yoshihiro S. // J. Polym. Environ. 2012. V. 20. P. 706; https://doi.org/10.1007/s10924-012-0424-7
- Angelin T.S., Ananthi V., Abhispa B., Nallathambi S. et al. // Int. J. Biol. Macromol. 2023. V. 234. P. 123703; https://doi.org/10.1016/j.ijbiomac.2023.123703
- Olewnik-Kruszkowska E., Koter I., Skopińska-Wiśniewska J. et al. // J. Photochem. Photobiol. A. Chem. 2015. V. 311. P. 114; 10.1016/j.jphotochem.2015.06.029' target='_blank'>http://dx.doi.org/doi: 10.1016/j.jphotochem.2015.06.029
- Smykovskaya R.S., Kuznetsova O.P., Medintseva T.I. et al. // Russ. J. Phys. Chem. 2022. V. 41. P. 1.
- Sasov A., Van Dyck D. // J. Microscopy. 1998. V. 191. P. 151; https://doi.org/10.5772/32264
- Medintseva T.I., Sergeev A.I., Shilkina N.G. et al. // Russ. J. Phys. Chem. 2023. V. 42. P. 61; https://doi.org/10.31857/S0207401X23050096
- Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Appl. Sci. 2023. V. 13. P. 3920; https://doi.org/10.3390/app13063920
- Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // J. Appl. Polym. Sci. 2019. V. 136. P. 47598; https://doi.org/10.1002/app.47598
- Jonscher A.K. // Nature. 1977. V. 267. P. 673; https://doi.org/10.1038/267673a0
- Rogovina S.Z., Lomakin S.M., Gasymov M.M. et al. // Polym. Sci. Ser. D. 2022. V. 6. P. 11; https://doi.org/10.31044/1994-6260-2022-0-6-11-19
补充文件
