От палочки до колбочки: функциональные переходы в эволюции фоторецепторов позвоночных

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Сетчатка позвоночных содержит два типа фоторецепторов: палочки и колбочки, являющиеся рецепторами ночного и дневного зрения соответственно. Они имеют ряд морфологических и биохимических различий, определяющих их функциональную роль. Обнаружение у ряда позвоночных рецепторов промежуточного типа стало основой для теории трансмутаций, постулирующей, что как палочки, так и колбочки в процессе адаптации зрительной системы к различным условиям обитания способны менять свои функциональные роли и превращаться в противоположный своему тип. Можно выделить несколько уровней проявления изменений в физиологии фоторецептора при функциональном переходе: морфологический (общее строение клетки), молекулярно-биохимический (экспрессия специфичных изоформ белков светочувствительного сигнального каскада) и электрофизиологический (чувствительность и кинетика ответа на свет). Фоторецепторы с подтвержденным переходным типом обнаруживаются у наиболее примитивных позвоночных, а также у групп, претерпевших смещение условий обитания в сторону крайне низкой или высокой освещенности. В последние два десятилетия значительно продвинулось понимание молекулярных механизмов функционального перехода от типичных палочек к колбочкам, и наоборот. Вместе с тем ряд аспектов остается малоизученным, в первую очередь из-за того, что многие животные, обладающие переходными рецепторами, далеки от стандартных модельных объектов современной биологии. В рамках данного обзора рассматриваются примеры переходных фоторецепторов в различных таксонах, описывается история их изучения и современные исследования, проливающие свет на молекулярные особенности, лежащие в основе их нестандартной физиологии.

Полный текст

Доступ закрыт

Об авторах

А. Ю. Ротов

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Институт физиологии им. Л.А. Орбели НАН РА

Автор, ответственный за переписку.
Email: rotovau@gmail.com
Россия, Санкт-Петербург; Армения, Ереван

Список литературы

  1. Vinnikov YA. A., Ehvolyutsiya retseptorov [Evolution of receptors], Leningrad. Nauka, 1979. 140 p. (in Russian)
  2. Govardovskii V.I. Fotoretseptory i zritel’nye pigmenty setchatki pozvonochnykh: sravnitel’nyi i ehvolyutsionnyi aspect [Photoreceptors and visual pigments of the vertebrate retina: a comparative and evolutionary perspective]. Rukovodstvo po fiziologii. Ehvolyutsionnaya fiziologiya [Handbook on Physiology. Evolutionary Physiology]. Leningrad. Nauka, 1983. V. 2. P. 229-261. (in Russian)
  3. Govardovskii V.I. Ehlektricheskie i opticheskie svoistva fotoretseptorov pozvonochnykh. Diss. dokt. biol. nauk [Electrical and optical properties of vertebrate photoreceptors. Dr. biol. sci. diss.]. Leningrad. 1978. 424 p. (in Russian)
  4. Govardovskii V.I., Astakhova L.A., Firsov M.L. Spetsifika fiziologicheskikh i biokhimicheskikh mekhanizmov vozbuzhdeniya i adaptatsii kolbochek setchatki [Specifics of physiological and biochemical mechanisms of excitation and adaptation in retinal cones]. Sensornye sistemy [Sensory systems]. 2015. V. 29(4). P. 296-308 (in Russian).
  5. Govardovskii V.I., Lychakov D.V. Fotoretseptory i zritel’nye pigmenty chernomorskikh plastinozhabernykh [Photoreceptors and visual pigments of Black Sea elasmobranchs]. Zhurnal ehvolyutsionnoi biokhimii i fiziologii [Journal of Evolutionary Biochemistry and Physiology]. 1977. V. 13. P. 162. (in Russian)
  6. Govardovskii V.I., Chkheidze N.I. Fotoretseptory i zritel’nye pigmenty setchatok nekotorykh zmei [Retinal photoreceptors and visual pigments of the retinas of certain snakes]. Izvestiya Akademii nauk GSSR. Seriya biologicheskaya [Proceedings of the Academy of Sciences of the GSSR. Biological Series]. 1989. V. 15(6). P. 408-414. (in Russian)
  7. Govardovskii V.I., Chkheidze N.I., Zueva L.V. Morfofunktsional’noe issledovanie setchatki glaza krokodilovogo kaimana Caiman crocodilus [Morphofunctional investigation of the retina in the crocodilian caiman Caiman crocodilus]. Sensornye sistemy [Sensory systems]. 1987. V. 1(1). P. 24-33. (in Russian)
  8. Golobokova E.Y., Kolesnikov A.V., Govardovskii V.I. Medlennye stadii fotoliza zritel’nogo pigmenta zelenykh palochek lyagushki Rana temporaria [Slow stages of photolysis of the visual pigment of green rods of frog Rana temporaria]. Sensornye sistemy [Sensory systems]. 2003. V. 17(2). P. 134-143. (in Russian)
  9. Kondrashev S.L., Gnyubkin V.F. Uchastie zelenykh palochek setchatki beskhvostykh amfibii v zritel’nom protsesse [Participation of retinal green rods of anuran amphibians in the visual process]. Mekhanizmy zreniya zhivotnykh [Mechanisms of animal vision]. Moscow. Nauka, 1978. P. 76–84. (in Russian)
  10. Maurer E.Y., Govardovskii V.I. Regeneratsiya zritel’nykh pigmentov v izolirovannoi setchatke lyagushki Rana temporaria [Regeneration of visual pigments in the isolated retina of the frog Rana temporaria]. Sensornye sistemy [Sensory systems]. 2013. V. 27(2). P. 99-107. (in Russian)
  11. Orlov O.Y. Ob ehvolyutsii tsvetovogo zreniya u pozvonochnykh [On the evolution of color vision in vertebrates]. Problemy ehvolyutsii [Problems of Evolution]. Novosibirsk. Nauka, 1972. V. 2. P. 69-94. (in Russian)
  12. Firsov M.L., Govardovskii V.I. Svetovaya adaptatsiya fotoretseptorov: smysl i mekhanizmy [Light adaptation of photoreceptors: meaning and mechanisms]. Sensornye sistemy [Sensory systems]. 2001. V. 15(2). P. 101-113. (in Russian)
  13. Firsov M.L., Govardovskii V.I. Temnovoi shum zritel’nykh pigmentov s raznymi maksimumami pogloshcheniya [Dark noise of visual pigments with different absorption maxima]. Sensornye sistemy [Sensory systems]. 1990. V. 4. P. 25–33. (in Russian)
  14. Aguilar M., Stiles W.S. Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta: International Journal of Optics. 1954. V. 1(1). P. 59-65. doi: 10.1080/713818657
  15. Ali M.A., Anctil M. Retinas of fishes: an atlas. Berlin, Heidelberg. Springer, 2012. 286 p. doi: 10.1007/978-3-642-66435-9
  16. Anderson S.R., Wiens J.J. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution. 2017. V. 71(8). P. 1944-1959. doi: 10.1111/evo.13284
  17. Arden G. B., Tansley K. The electroretinogram of a diurnal gecko. The Journal of General Physiology. 1962. V. 45(6). P. 1145-1161. doi: 10.1085/jgp.45.6.1145
  18. Arey L.B. Changes in the rod-visual cells of the frog due to the action of light. Journal of Comparative Neurology. 1916. V. 26. P. 429–441. doi: 10.1002/cne.900260406
  19. Armengol J.A., Prada F., Genis-Galvez J.M. Oil Droplets in the Chameleon (Chamaleo chamaleo) Retina. Cells Tissues Organs. 1981. V. 110(1). P. 35-39. doi: 10.1159/000145410
  20. Arshavsky V.Y., Burns M.E. Current understanding of signal amplification in phototransduction. Cellular logistics. 2014. V. 4(2). P. e28680. doi: 10.4161/cl.29390
  21. Astakhova L.A., Firsov M.L., Govardovskii V.I. Kinetics of turn-offs of frog rod phototransduction cascade. The Journal of general physiology. 2008. V. 132(5). P. 587-604. doi: 10.1085/jgp.200810034
  22. Astakhova L., Firsov M., Govardovskii V. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling. Molecular vision. 2015. V. 21. P. 244.
  23. Astakhova L.A., Novoselov A.D., Ermolaeva M.E., Firsov M.L., Rotov A.Yu. Phototransduction in anuran green rods: origins of extra-sensitivity. International Journal of Molecular Sciences. 2021. V. 22(24) P. 13400. doi: 10.3390/ijms222413400
  24. Asteriti S., Grillner S., Cangiano L.A. Cambrian origin for vertebrate rods. Elife. 2015. V. 4. P. e07166. doi: 10.7554/eLife.07166
  25. Bäckström, A.C., Reuter T. Opponent colour interaction between two kinds of rod signals in the frog’s retina. Physica Norvegica. 1974. V. 7. P. 187–189.
  26. Baden T. Ancestral photoreceptor diversity as the basis of visual behavior. Nature Ecology & Evolution. 2024. V. 8(3). P. 374-386. doi: 10.1038/s41559-023-02291-7
  27. Baden T., Osorio D. The retinal basis of vertebrate color vision. Annual review of vision science. 2019. V. 5(1). P. 177-200. doi: 10.1146/annurev-vision-091718-014926
  28. Barlow H.B. Purkinje shift and retinal noise. Nature. 1957. V. 179. P. 255–256. doi: 10.1038/179255b0
  29. Barlow H.B. The physical limits of visual discrimination. Photophysiology. 1964. V. 2. P. 163-202. doi: 10.1016/B978-1-4832-2739-9.50011-9
  30. Baylor D.A., Lamb T.D., Yau K.W. Responses of retinal rods to single photons. The Journal of physiology. 1979. V. 288(1). P. 613-634. doi: 10.1113/jphysiol.1979.sp012716
  31. Baylor D.A., Matthews G., Yau K.W. Two components of electrical dark noise in toad retinal rod outer segments. The Journal of physiology. 1980. V. 309(1). P. 591-621. doi: 10.1113/jphysiol.1980.sp013529
  32. Bennis M., Molday R.S., Versaux-Botteri C., Repérant J., Jeanny J.C., McDevitt D.S. Rhodopsin-like immunoreactivity in the ‘all cone’retina of the chameleon (Chameleo chameleo). Experimental eye research. 2005. V. 80(5). P. 623-627. doi: 10.1016/j.exer.2004.11.004
  33. Bhattacharyya N., Darren B., Schott R.K., Tropepe V., Chang B.S. Cone-like rhodopsin expressed in the all-cone retina of the colubrid pine snake as a potential adaptation to diurnality. Journal of Experimental Biology. 2017. V. 220(13). P. 2418-2425. doi: 10.1242/jeb.156430
  34. Biagioni L. M., Hunt D.M., Collin S.P. Morphological characterization and topographic analysis of multiple photoreceptor types in the retinae of mesopelagic hatchetfishes with tubular eyes. Frontiers in Ecology and Evolution. 2016. V. 4. P. 25. doi: 10.3389/fevo.2016.00025
  35. Bittencourt G.B., Hauzman E., Bonci D.M.O., Ventura D.F. Photoreceptors morphology and genetics of the visual pigments of Bothrops jararaca and Crotalus durissus terrificus (Serpentes, Viperidae). Vision Research. 2019. V. 158. P. 72-77. doi: 10.1016/j.visres.2019.02.006
  36. Boll F. Zur Anatomie und Physiologie der Retina. Archiv für Anatomie und Physiologie. 1877. P. 4-36.
  37. Bowmaker J.K. Evolution of vertebrate visual pigments. Vision research. 2008. V. 48(20). P. 2022-2041.
  38. Bozzanao A., Murgia R., Vallerga S., Hirano J., Archer S. The photoreceptor system in the retinae of two dogfishes, Scyliorhinus canicula and Galeus melastomus: possible relationship with depth distribution and predatory lifestyle. Journal of Fish Biology. 2001. V. 59(5). P. 1258-1278. doi: 10.1006/jfbi.2001.1737
  39. Bradshaw S.N., Allison W.T. Hagfish to illuminate the developmental and evolutionary origins of the vertebrate retina. Frontiers in Cell and Developmental Biology. 2022. V. 10. P. 822358. doi: 10.3389/fcell.2022.822358
  40. Brazeau M. D., Friedman M. The origin and early phylogenetic history of jawed vertebrates. Nature. 2015. V. 520(7548). P. 490-497. doi: 10.1038/nature14438
  41. Brin K.P., Ripps H. Rhodopsin photoproducts and rod sensitivity in the skate retina. The Journal of general physiology. 1977. V. 69(1). P. 97-120. doi: 10.1085/jgp.69.1.97
  42. Calvert P.D., Govardovskii V.I., Arshavsky V.Y., Makino C.L. Two temporal phases of light adaptation in retinal rods. The Journal of general physiology. 2002. V. 119(2). P. 129-146. doi: 10.1085/jgp.119.2.129
  43. Carleton K.L., Escobar-Camacho D., Stieb S.M., Cortesi F., Marshall N J. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. Journal of Experimental Biology. 2020. V. 223(8). P. jeb193334. doi: 10.1242/jeb.193334
  44. Chen M.H., Kuemmel C., Birge R.R., Knox B.E. Rapid release of retinal from a cone visual pigment following photoactivation. Biochemistry. 2012. V. 51(20). P. 4117-4125. doi: 10.1021/bi201522h
  45. Claes J.M., Partridge J.C., Hart N.S., Garza-Gisholt E., Ho H.C., Mallefet J., Collin S.P. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks. PloS One. 2014. V. 9(8). P. e104213. doi: 10.1371/journal.pone.0104213
  46. Cohen A.I. Rods and Cones. Physiology of Photoreceptor Organs. Handbook of Sensory Physiology. Fuortes M.G.F. (eds). Berlin, Heidelberg. Springer, 1972. V. 7/2. P. 63–110. doi: 10.1007/978-3-642-65340-7_3
  47. Collin S.P., Hart N.S., Shand J., Potter I.C. Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis). Visual neuroscience. 2003. V. 20(2). P. 119-130. doi: 10.1017/S0952523803202030
  48. Collin S.P., Davies W.L., Hart N.S., Hunt D.M. The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009. V. 364( 1531). P. 2925-2940. doi: 10.1098/rstb.2009.0099
  49. Collin S., V Hoskins R., C Partridge J. Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization. Brain Behavior and Evolution. 1998. V. 51(6). P. 291-314. doi: 10.1159/000006544
  50. Collin S.P., Potter I.C., Braekevelt C.R. The ocular morphology of the southern hemisphere lamprey Geotria australis Gray, with special reference to optical specialisations and the characterisation and phylogeny of photoreceptor types. Brain Behavior and Evolution. 1999. V. 54(2). P. 96-118. doi: 10.1159/000006616
  51. Collin S.P., Trezise A.E. Response to Pisani et al. Current Biology. 2006. V. 16(9). P. R320. doi: 10.1016/j.cub.2006.03.091
  52. Cornwall M.C., Ripps H., Chappell R.L., Jones G.J. Membrane current responses of skate photoreceptors. The Journal of general physiology. 1989. V. 94(4). P. 633-647. doi: 10.1085/jgp.94.4.633
  53. Cornwall M. C., Fein A., MacNichol Jr E. F. Cellular mechanisms that underlie bleaching and background adaptation. The Journal of general physiology. 1990. V. 96(2). P. 345-372. doi: 10.1085/jgp.96.2.345
  54. Cortesi F., Musilova Z., Stieb S.M., Hart N.S., Siebeck U.E., Malmstrøm M., Tørresen O.K., Jentoft S., Cheney K.L., Marshall N.J., Carleton K.L., Salzburger W. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proceedings of the National Academy of Sciences. 2015. V. 112(5). P. 1493-1498. doi: 10.1073/pnas.1417803112
  55. Crescitelli F. The gecko visual pigments. The behavior of opsin. The Journal of general physiology. 1979. V. 73(5). P. 541-552. doi: 10.1085/jgp.73.5.541
  56. Crescitelli F. The two visual pigments of the gecko: The labile behavior. Journal of comparative physiology. 1980. V. 138(2). P. 121-129. doi: 10.1007/BF00680436
  57. Crescitelli F. The visual cells and visual pigments of the vertebrate eye. Photochemistry of vision. Handbook of sensory physiology. Dartnall H.J.A. (eds). Berlin, Heidelberg. Springer, 1972. V. 7/1. P. 245-353. doi: 10.1007/978-3-642-65066-6_8
  58. Crescitelli F., Dartnall H.J.A., Loew E.R. The gecko visual pigments: A microspectrophotometric study. The Journal of Physiology. 1977. V. 268(2). P. 559-573. doi: 10.1113/jphysiol.1977.sp011872
  59. Darden A.G., Wu B.X., Znoiko S.L., Hazard E.S., Kono M., Crouch R.K., Ma J.X. A novel Xenopus SWS2, P434 visual pigment: structure, cellular location, and spectral analyses. Molecular vision. 2003. V. 9. P. 191-199.
  60. Dartnall H.J.A. The visual pigment of the green rods. Vision Research. 1967. V. 7(1-2). P. 1-16. doi: 10.1016/0042-6989(67)90022-3
  61. Davies W.L., Collin S.P., Hunt D.M. Adaptive gene loss reflects differences in the visual ecology of basal vertebrates. Molecular biology and evolution. 2009. V. 26(8). P. 1803-1809. doi: 10.1093/molbev/msp089
  62. Davies W.I.L., Collin S.P., Hunt D.M. Molecular ecology and adaptation of visual photopigments in craniates. Molecular ecology. 2012. V. 21(13). P. 3121-3158. doi: 10.1111/j.1365-294X.2012.05617.x
  63. Davies, W.L., Cowing, J.A., Bowmaker, J.K., Carvalho, L.S., Gower, D.J., Hunt, D.M. Shedding light on serpent sight: the visual pigments of henophidian snakes. Journal of Neuroscience. 2009. V. 29(23). P. 7519-7525. doi: 10.1523/JNEUROSCI.0517-09.2009
  64. de Busserolles F., Cortesi F., Helvik J.V. Davies W.I.L., Templin R.M., Sullivan R.K.P., Michell C.T., Mountford J.K., Collin S.P., Irigoien X., Kaartvedt S., Marshall J. Pushing the limits of photoreception in twilight conditions: the rod-like cone retina of the deep-sea pearlsides. Science advances. 2017. V. 3(11). P. eaao4709. doi: 10.1126/sciadv.aao4709
  65. de Busserolles F., Fogg L., Cortesi F., Marshall J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Seminars in cell & developmental biology. 2020. V. 106. P. 20-30. doi: 10.1016/j.semcdb.2020.05.027
  66. Denton E.J. Light and vision at depths greater than 200 metres. Light and life in the sea. Herring P.J., Campbell A.K., Whitfield M., Maddock L. (eds). Cambridge. Cambridge University Press. 1990. P. 127-148.
  67. Denton E.J.; Wyllie J.H. Study of the photosensitive pigments in the pink and green rods of the frog. Journal of Physiology. 1955. V. 127. P. 81-89. doi: 10.1113/jphysiol.1955.sp005239
  68. Detwiler S. R., Laurens H. Studies on the retina. The structure of the retina of Phrynosoma cornutum. Journal of Comparative Neurology. 1920. V. 32(3). P. 347-356. doi: 10.1002/cne.900320305
  69. Dickson D.H., Graves D.A. Fine structure of the lamprey photoreceptors and retinal pigment epithelium (Petromyzon marinus L.). Experimental Eye Research. 1979. V. 29(1). P. 45-60. doi: 10.1016/0014-4835(79)90165-9
  70. Dodt E. Purkinje-shift in the rod eye of the bush-baby, Galago crassicaudatus. Vision Research. 1967. V. 7(7-8). P. 509-517. doi: 10.1016/0042-6989(67)90060-0
  71. Donner K., Firsov M.L., Govardovskii V.I. The frequency of isomerization‐like ‘dark’ events in rhodopsin and porphyropsin rods of the bull‐frog retina. The Journal of physiology. 1990. V. 428(1). P. 673-692. doi: 10.1113/jphysiol.1990.sp018234
  72. Donner K.O., Reuter T. The spectral sensitivity and photopigment of the green rods in the frog’s retina. Vision Research. 1962. V. 2. P. 357-372. doi: 10.1016/0042-6989(62)90003-2
  73. Donner K., Yovanovich C.A.M. A frog’s eye view: Foundational revelations and future promises. Seminars in Cell & Developmental Biology. 2020. V. 106. P. 72-85. doi: 10.1016/j.semcdb.2020.05.011
  74. Dowling J.E., Ripps H. Adaptation in skate photoreceptors. The Journal of general physiology. 1972. V. 60(6). P. 698-719. doi: 10.1085/jgp.60.6.698
  75. Dowling J.E., Ripps H. On the duplex nature of the skate retina. Journal of Experimental Zoology. 1991. V. 256(S5). P. 55-65. doi: 10.1002/jez.1402560509
  76. Dowling J.E., Ripps H. S-potentials in the skate retina: intracellular recordings during light and dark adaptation. The Journal of General Physiology. 1971. V. 58(2). P. 163-189. doi: 10.1085/jgp.58.2.163
  77. Dowling J.E., Ripps H. Visual adaptation in the retina of the skate. The Journal of General Physiology. 1970. V. 56(4). P. 491-520. doi: 10.1085/jgp.56.4.491
  78. Dunn R.F. Studies on the retina of the gecko Coleonyx variegatus: I. The visual cell classification. Journal of ultrastructure research. 1966. V. 16(5-6). P. 651-671. doi: 10.1016/S0022-5320(66)80012-6
  79. Ebrey T., Koutalos Y. Vertebrate photoreceptors. Progress in retinal and eye research. 2001. V. 20(1). P. 49-94. doi: 10.1016/S1350-9462(00)00014-8
  80. Ellingson J.M., Fleishman L.J., Loew E.R. Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis. Journal of Comparative Physiology A. 1995. V. 177. P. 559-567. doi: 10.1007/BF00207185
  81. Emerling C.A. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Molecular Phylogenetics and Evolution. 2017a. V. 115. P. 40-49. doi: 10.1016/j.ympev.2017.07.014
  82. Emerling C.A. Archelosaurian color vision, parietal eye loss, and the crocodylian nocturnal bottleneck. Molecular biology and evolution. 2017b. V. 34(3). P. 666-676. doi: 10.1093/molbev/msw265
  83. Emerling C.A., Springer M.S. Eyes underground: regression of visual protein networks in subterranean mammals. Molecular Phylogenetics and Evolution. 2014. V. 78. P. 260-270. doi: 10.1016/j.ympev.2014.05.016
  84. Emerling C.A., Springer M.S. Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2015. V. 282(1800). P. 20142192. doi: 10.1098/rspb.2014.2192
  85. Fain G.L. Lamprey vision: photoreceptors and organization of the retina. Seminars in cell & developmental biology. 2020. V. 106. P. 5-11. doi: 10.1016/j.semcdb.2019.10.008
  86. Fain G.L., Dowling J.E. Intracellular recordings from single rods and cones in the mudpuppy retina. Science. 1973. V. 180(4091). P. 1178-1181. doi: 10.1126/science.180.4091.1178
  87. Fernandez H.R.C. Visual pigments of bioluminescent and nonbioluminescent deep-sea fishes. Vision Research. 1979. V. 19(5). P. 589-592. doi: 10.1016/0042-6989(79)90144-5
  88. Fernholm B., Holmberg K. The eyes in three genera of hagfish (Eptatretus, Paramyxine and Myxine) – A case of degenerative evolution. Vision Research. 1975. V. 15(2). P. 253-IN4. doi: 10.1016/0042-6989(75)90215-1
  89. Francke M., Kreysing M., Mack A., Engelmann J., Karl A., Makarov F., Guck J., Kolle M., Wolburg H., Pusch R., von der Emde G., Schuster S., Wagner H.J., Reichenbach A. Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progress in retinal and eye research. 2014. V. 38. P. 43-69. doi: 10.1016/j.preteyeres.2013.10.001
  90. Franz V. Die Akkommodation des Selachierauges und seine Abblendungsapparate, nebst Befunden an der Retina. Zoologische Jahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere. 1931. V. 49. P. 323-462.
  91. Fröhlich E., Wagner H.J. Development of multibank rod retinae in deep-sea fishes. Visual neuroscience. 1998. V. 15(3). P. 477-483. doi: 10.1017/s095252389815304x
  92. Gamble T., Greenbaum E., Jackman T.R., Bauer A.M. Into the light: diurnality has evolved multiple times in geckos. Biological Journal of the Linnean Society. 2015. V. 115(4). P. 896-910. doi: 10.1111/bij.12536
  93. Goldsmith T. H., Collins J. S., Licht S. The cone oil droplets of avian retinas. Vision research. 1984. V. 24(11). P. 1661-1671. doi: 10.1016/0042-6989(84)90324-9
  94. Golobokova E.Y., Govardovskii V.I. Late stages of visual pigment photolysis in situ: cones vs. rods. Vision research. 2006. V. 46(14). P. 2287-2297. doi: 10.1016/j.visres.2005.12.017
  95. Govardovskii V.I., Lychakov D.V. Visual cells and visual pigments of the lamprey, Lampetra fluviatilis. Journal of Comparative Physiology A. 1984. V. 154(2). P. 279-286. doi: 10.1007/BF00604994
  96. Govardovskii V.I., Zueva L.V., Lychakov D.V. Microspectrophotometric study of visual pigments in five species of geckos. Vision research. 1984. V. 24(10). P. 1421-1423. doi: 10.1016/0042-6989(84)90198-6
  97. Govardovskii V.I., Rotov A.Y., Astakhova L.A., Nikolaeva D.A., Firsov M.L. Visual cells and visual pigments of the river lamprey revisited. Journal of Comparative Physiology A. 2020. V. 206(1). P. 71-84. doi: 10.1007/s00359-019-01395-5
  98. Govardovskii V. I., Reuter T. Why do green rods of frog and toad retinas look green? Journal of Comparative Physiology B. 2014. V. 200. P. 823-835. doi: 10.1007/s00359-014-0925-z
  99. Gower D.J., Fleming J.F., Pisani D., Vonk F.J., Kerkkamp H.M., Peichl L., Meimann S, Casewell N.R., Henkel C.V., Richardson M.K., Sanders K.L., Simões B.F. Eye-transcriptome and genome-wide sequencing for Scolecophidia: implications for inferring the visual system of the ancestral snake. Genome biology and evolution. 2021. V. 13(12). P. evab253. doi: 10.1093/gbe/evab253
  100. Gower D.J., Hauzman E., Simões B.F., Schott R.K. Eyes, vision, and the origins and early evolution of snakes. The Origin and Early Evolutionary History of Snakes. Gower D.J., Zaher H. (eds). Cambridge. Cambridge University Press, 2022. V. 90. P. 316. doi: 10.1017/9781108938891.020
  101. Gower D.J., Sampaio F. L., Peichl L., Wagner H.J., Loew E.R., Mclamb W., Douglas R.H., Orlov N., Grace M.S., Hart N.S., Hunt D.M., Partridge J.C., Simões B.F. Evolution of the eyes of vipers with and without infrared-sensing pit organs. Biological Journal of the Linnean Society. 2019. V. 126(4). P. 796-823. doi: 10.1093/biolinnean/blz003
  102. Gruber S.H. Duplex vision in the elasmobranchs: histological, electrophysiological and psychophysical evidence. Vision in fishes: new approaches in research. Ali M.A. (eds). Boston, MA. Springer, 1975. P. 525-540.
  103. Hahn J., Monavarfeshani A., Qiao M., Kao A.H., Kölsch Y., Kumar A., Kunze V.P., Rasys A.M., Richardson R., Wekselblatt J.B., Baier H., Lucas R.J., Li W., Meister M., Trachtenberg J.T., Yan W., Peng Y.R., Sanes J.R., Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. Nature. 2023. V. 624(7991). P. 415-424. doi: 10.1038/s41586-023-06638-9
  104. Hamasaki D.I. An anatomical and electrophysiological study of the retina of the owl monkey, Aotes trivirgatus. Journal of Comparative Neurology. 1967. V. 130(2). P. 163-173. doi: 10.1002/cne.901300205
  105. Hart N.S., Lamb T.D., Patel H.R., Chuah A., Natoli R.C., Hudson N.J., Cutmore S.C., Davies W.I..L., Collin S.P., Hunt D.M. Visual opsin diversity in sharks and rays. Molecular Biology and Evolution. 2020. V. 37(3). P. 811-827. doi: 10.1093/molbev/msz269
  106. Hart N S., Coimbra J.P., Collin S.P., Westhoff G. Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. Journal of Comparative Neurology. 2012. V. 520(6). P. 1246-1261. doi: 10.1002/cne.22784
  107. Hauser F.E., Chang B.S.W. Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Current opinion in genetics & development. 2017. V. 47. P. 110-120. doi: 10.1016/j.gde.2017.09.005
  108. Hauzman E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Seminars in Cell & Developmental Biology. 2020. V. 106. P. 86-93. doi: 10.1016/j.semcdb.2020.04.004
  109. Hauzman E., Bonci D.M. O., Suárez-Villota E.Y., Neitz M., Ventura D.F. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes. BMC Evolutionary Biology. 2017. V. 17. P. 1-14. doi: 10.1186/s12862-017-1110-0
  110. Hauzman E., Bonci D.M., Grotzner S.R., Mela M. Liber A.M., Martins S.L., Ventura D.F. Comparative study of photoreceptor and retinal ganglion cell topography and spatial resolving power in Dipsadidae snakes. Brain Behavior and Evolution. 2014. V. 84(3). P. 197-213. doi: 10.1159/000365275
  111. Hecht S. Rods, cones, and the chemical basis of vision. Physiological Reviews. 1937. V. 17(2). P. 239-290. doi: 10.1152/physrev.1937.17.2.239
  112. Hecht S., Shlaer S., Pirenne M.H. Energy, quanta, and vision. Journal of General Physiology. 1942. V. 25(6). P. 819-840. doi: 10.1085/jgp.25.6.819
  113. Hibbard E., Lavergne J. Morphology of the retina of the sea-snake, Pelamis platurus. Journal of anatomy. 1972. V. 112(Pt 1). P. 125.
  114. Hisatomi O., Ishikawa M., Tonosaki A., Tokunaga F. Characterization of lamprey rhodopsin by isolation from lamprey retina and expression in mammalian cells. Photochemistry and Photobiology. 1997. V. 66. P. 792–5. doi: 10.1111/j.1751-1097.1997.tb03226.x
  115. Hisatomi O., Takahashi Y., Taniguchi Y., Tsukahara Y., Tokunaga F. Primary structure of a visual pigment in bullfrog green rods. FEBS Letters. 1999. V. 447. P. 44–48. doi: 10.1016/S0014-5793(99)00209-4
  116. Hisatomi O., Kayada S., Taniguchi Y., Kobayashi Y., Satoh T., Tokunaga F. Primary structure and characterization of a bullfrog visual pigment contained in small single cones. Comparative Biochemistry and Physiology Part B. 1998. V. 119(3). P. 585-591. doi: 10.1016/S0305-0491(98)00032-7
  117. Hisatomi O., Tokunaga F. Molecular evolution of proteins involved in vertebrate phototransduction. Comparative Biochemistry and Physiology Part B. 2002. V. 133(4). P. 509-522. doi: 10.1016/S1096-4959(02)00127-6
  118. Hofmann K.P., Lamb T.D. Rhodopsin, light-sensor of vision. Progress in Retinal and Eye Research. 2023. V. 93. P. 101116. doi: 10.1016/j.preteyeres.2022.101116
  119. Imai H., Imamoto Y., Yoshizawa T., Shichida Y. Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. Biochemistry. 1995. V. 34. P. 10525-10531. doi: 10.1021/bi00033a026
  120. Imai H., Kuwayama S., Onishi A., Morizumi T., Chisaka O., Shichida Y. Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ. Photochemical & Photobiological Sciences. 2005. V. 4. P. 667–674. doi: 10.1039/b416731g
  121. Ingram N.T., Sampath A.P., Fain G.L. Why are rods more sensitive than cones? The Journal of physiology. 2016. V. 594(9). P. 5415-5426. doi: 10.1113/JP272556
  122. Ishikawa M., Takao M., Washioka H., Tokunaga F., Watanabe H., Tonosaki A. Demonstration of rod and cone photoreceptors in the lamprey retina by freeze-replication and immunofluorescence. Cell and tissue research. 1987. V. 249. P. 241-246. doi: 10.1007/bf00215506
  123. Jacobs G.H. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—a significant trend in the evolution of mammalian vision. Visual Neuroscience. 2013. V. 30(1-2). P. 39-53. doi: 10.1017/S0952523812000429
  124. Jacobs G.H., Fisher S.K., Anderson D.H., Silverman M.S. Scotopic and photopic vision in the California ground squirrel: physiological and anatomical evidence. Journal of Comparative Neurology. 1976. V. 165(2). P. 209-227. doi: 10.1002/cne.901650207
  125. Jacobs G.H., Fenwick J.A., Crognale M.A., Deegan J.F. The all-cone retina of the garter snake: spectral mechanisms and photopigment. Journal of Comparative Physiology A. 1992. V. 170. P. 701-707. doi: 10.1007/bf00198980
  126. Jamieson G.S., Fisher H.D. The retina of the harbour seal, Phoca vitulina. Canadian Journal of Zoology. 1971. V. 49(1). P. 19-23. doi: 10.1139/z71-005
  127. Karnik S.S., Sakmar T.P., Chen H.B., Khorana H.G. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proceedings of the National Academy of Sciences. 1988. V. 85(22). P. 8459-8463. doi: 10.1073/pnas.85.22.8459
  128. Katti C., Stacey-Solis M., Coronel-Rojas N.A., Davies W.I.L. The diversity and adaptive evolution of visual photopigments in reptiles. Frontiers in Ecology and Evolution. 2019. V. 7. P. 352. doi: 10.3389/fevo.2019.00352
  129. Kawamura S., Tachibanaki S. Molecular bases of rod and cone differences. Progress in retinal and eye research. 2022. V. 90. P. 101040. doi: 10.1016/j.preteyeres.2021.101040
  130. Kawamura S., Yokoyama S. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision research. 1998. V. 38(1). P. 37-44. doi: 10.1016/S0042-6989(97)00160-0
  131. Kefalov V., Fu Y., Marsh-Armstrong N., Yau K.W. Role of visual pigment properties in rod and cone phototransduction. Nature. 2003. V. 425(6957). P. 526-531. doi: 10.1038/nature01992
  132. Kefalov V.J. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches. Journal of Biological Chemistry. 2012. V. 287(3). P. 1635-1641. doi: 10.1074/jbc.R111.303008
  133. Kelber A., Roth L.S.V. Nocturnal colour vision–not as rare as we might think. Journal of Experimental Biology. 2006. V. 209(5). P. 781-788. doi: 10.1242/jeb.02060
  134. Kelber A., Yovanovich C., Olsson P. Thresholds and noise limitations of colour vision in dim light. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017. V. 372(1717). P. 20160065. doi: 10.1098/rstb.2016.0065
  135. Kiser P.D., Golczak M., Palczewski K. Chemistry of the retinoid (visual) cycle. Chemical reviews. 2014. V. 114(1). P. 194-232. doi: 10.1021/cr400107q
  136. Kleinschmidt J., Dowling J.E. Intracellular recordings from gecko photoreceptors during light and dark adaptation. The Journal of general physiology. 1975. V. 66(5). P. 617-648. doi: 10.1085/jgp.66.5.617
  137. Koch K.W., Dell’Orco D. A calcium-relay mechanism in vertebrate phototransduction. ACS chemical neuroscience. 2013. V. 4(6). P. 909-917. doi: 10.1021/cn400027z
  138. Kojima D., Okano T., Fukada Y., Shichida Y., Yoshizawa T., Ebrey T.G. Cone visual pigments are present in gecko rod cells. Proceedings of the National Academy of Sciences. 1992. V. 89(15). P. 6841-6845. doi: 10.1073/pnas.89.15.6841
  139. Kojima K., Matsutani Y., Yamashita T., Yanagawa M., Imamoto Y., Yamano Y., Wada A., Hisatomi O., Nishikawa K., Sakurai K., Shichida Y. Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation. Proceedings of the National Academy of Sciences. 2017. V. 114. P. 5437-5442. doi: 10.1073/pnas.1620010114
  140. Kojima K., Matsutani Y., Yanagawa M., Imamoto Y., Yamano Y., Wada A., Shichida Y., Yamashita T. Evolutionary adaptation of visual pigments in geckos for their photic environment. Science Advances. 2021. V. 7(40). P. eabj1316. doi: 10.1126/sciadv.abj1316
  141. Kojima K., Yanagawa M., Imamoto Y., Yamano Y., Wada A., Shichida Y., Yamashita T. Convergent mechanism underlying the acquisition of vertebrate scotopic vision. Journal of Biological Chemistry. 2024. V. 300(4). doi: 10.1016/j.jbc.2024.107175
  142. Kolesnikov A.V., Ala-Laurila P., Shukolyukov S.A., Crouch R.K., Wiggert B., Estevez M.E., Govardovskii V.I., Cornwall M.C. Visual cycle and its metabolic support in gecko photoreceptors. Vision research. 2007. V. 47(3). P. 363-374. doi: 10.1016/j.visres.2006.08.024
  143. Kondrashev S.L. Trichromatic vision in toads: evidence from preference for colour objects during mate choice. Behaviour. 2023. V. 160(8-9). P. 753-784. doi: 10.1163/1568539X-bja10233
  144. Korenyak D.A., Govardovskii V.I. Photoreceptors and visual pigments in three species of newts. Journal of Evolutionary Biochemistry and Physiology. 2013. V. 49. P. 399-407. doi: 10.1134/S0022093013040038
  145. Koskelainen A., Hemilä S., Donner K. Spectral sensitivities of short‐and long‐wavelength sensitive cone mechanisms in the frog retina. Acta Physiologica Scandinavica. 1994. V. 152(1). P. 115-124. doi: 10.1111/j.1748-1716.1994.tb09790.x
  146. Lagman D., Franzen I.E., Eggert J., Larhammar D., Abalo X.M. Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evolutionary Biology. 2016. V. 16. P. 124. doi: 10.1186/s12862-016-0695-z
  147. Lamb T.D. Evolution of phototransduction, vertebrate photoreceptors and retina. Progress in retinal and eye research. 2013. V. 36. P. 52-119. doi: 10.1016/j.preteyeres.2013.06.001
  148. Lamb T.D. Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Progress in retinal and eye research. 2020. V. 76. P. 100823. 10.1016/j.preteyeres.2019.100823
  149. Lamb T.D., Pugh E.N. Jr. Phototransduction, dark adaptation, and rhodopsin regeneration. The Proctor Lecture. Investigative ophthalmology & visual science. 2006. V. 47. P. 5138–5152. doi: 10.1167/iovs.06-0849
  150. Locket N.A. Adaptations to the deep-sea environment. The visual system in vertebrates. Handbook of Sensory Physiology. Crescitelli F. (eds). Berlin, Heidelberg. Springer, 1977. V. 7/5. P. 67-192. doi: 10.1007/978-3-642-66468-7_3
  151. Locket N.A. The multiple bank rod fovea of Bajacalifornia drakei, an alepocephalid deep-sea teleost. Proceedings of the Royal Society of London. Series B: Biological Sciences. 1985. V. 224(1234). P. 7-22. doi: 10.1098/rspb.1985.0018
  152. Loew E.R. A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (Gekko gekko). Vision research. 1994. V. 34(11). P. 1427-1431. doi: 10.1016/0042-6989(94)90143-0
  153. Loew E.R., Govardovskii V.I., Röhlich P., Szél Á. Microspectrophotometric and immunocytochemical identification of ultraviolet photoreceptors in geckos. Visual Neuroscience. 1996. V. 13(2). P. 247-256. doi: 10.1017/S0952523800007483
  154. Luo D.G.; Yue W.W.; Ala-Laurila P.; Yau K.W. Activation of visual pigments by light and heat. Science. 2011. V. 332. P. 1307-1312. doi: 10.1126/science.1200172
  155. Lupše N., Cortesi F., Freese M., Marohn L., Pohlmann J.D., Wysujack K., Hanel R., Musilova Z. Visual gene expression reveals a cone-to-rod developmental progression in deep-sea fishes. Molecular Biology and Evolution. 2021. V. 38(12). P. 5664-5677. doi: 10.1093/molbev/msab281
  156. Ma J., Znoiko S., Othersen K.L., Ryan J.C., Das J., Isayama T., Kono,M., Oprian D.D., Corson W.D., Cornwall M.C., Cameron D.A., Harosi F.I., Makino C.L., Crouch R.K. A visual pigment expressed in both rod and cone photoreceptors. Neuron. 2001. V. 32. P. 451-461. doi: 10.1016/S0896-6273(01)00482-2
  157. Macedonia J.M., Lappin A.K., Loew E.R., Mcguire J.A., Hamilton P.S., Plasman M., Brandt Y., Lemos-Espinal J.A., Kemp D.J. Conspicuousness of Dickerson’s collared lizard (Crotaphytus dickersonae) through the eyes of conspecifics and predators. Biological Journal of the Linnean Society. 2009. V. 97(4). P. 749-765. doi: 10.1111/j.1095-8312.2009.01217.x
  158. Magaña-Hernández L., Wagh A.S., Fathi J.G., Robles J.E., Rubio B., Yusuf Y., Rose E.E., Brown D.E., Perry P.E., Hamada E., Anastassov I. A. Ultrastructural characteristics and synaptic connectivity of photoreceptors in the simplex retina of Little skate (Leucoraja erinacea). Eneuro. 2023. V. 10(10). P. eneuro.0226-23.2023. doi: 10.1523/eneuro.0226-23.2023
  159. Mariani A.P. Photoreceptors of the larval tiger salamander retina. Proceedings of the Royal Society of London. Series B: Biological Sciences. 1986. V. 227(1249). P. 483-492. doi: 10.1098/rspb.1986.0035
  160. Matthews G. Dark noise in the outer segment membrane current of green rod photoreceptors from toad retina. The Journal of Physiology. 1984. V. 349(1). P. 607-618. doi: 10.1113/jphysiol.1984.sp015176
  161. Matthews G. Physiological characteristics of single green rod photoreceptors from toad retina. The Journal of Physiology. 1983. V. 342(1). P. 347-359. doi: 10.1113/jphysiol.1983.sp014855
  162. Maximov V.V., Orlov O.Y., Reuter T. Chromatic properties of the retinal afferents in the thalamus and the tectum of the frog (Rana temporaria). Vision Research. 1985. V. 25. P. 1037–1049. doi: 10.1016/0042-6989(85)90092-6
  163. McDevitt D.S., Brahma S.K., Jeanny J.C., Hicks D. Presence and foveal enrichment of rod opsin in the “all cone” retina of the American chameleon. The Anatomical Record. 1993. V. 237(3). P. 299-307. doi: 10.1002/ar.1092370302
  164. McGowen M.R., Tsagkogeorga G., Williamson J., Morin P.A., Rossiter A.S.J. Positive selection and inactivation in the vision and hearing genes of cetaceans. Molecular Biology and Evolution. 2020. V. 37. №. 7. P. 2069-2083. doi: 10.1093/molbev/msaa070.
  165. McKibbin C., Toye A.M., Reeves P.J., Khorana H.G., Edwards P.C., Villa C., Booth P.J. Opsin stability and folding: the role of Cys185 and abnormal disulfide bond formation in the intradiscal domain. Journal of molecular biology. 2007. V. 374(5). P. 1309-1318. doi: 10.1016/j.jmb.2007.10.013
  166. Meneghini K.A., Hamasaki D.I. The electroretinogram of the iguana and Tokay gecko. Vision Research. 1967. V. 7(3-4). P. 243-IN11. doi: 10.1016/0042-6989(67)90088-0
  167. Meredith R.W., Gatesy J., Emerling C.A., York V.M., Springer M.S. Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genetics. 2013. V. 9(4). P. e1003432. doi: 10.1371/journal.pgen.1003432
  168. Mohun S.M., Davies W.I.L. The evolution of amphibian photoreception. Frontiers in Ecology and Evolution. 2019. V. 7. P. 321. doi: 10.3389/fevo.2019.00321
  169. Morshedian A., Fain G.L. Single-photon sensitivity of lamprey rods with cone-like outer segments. Current Biology. 2015. V. 25(4). P. 484-487. doi: 10.1016/j.cub.2014.12.031
  170. Morshedian A., Fain G.L. Light adaptation and the evolution of vertebrate photoreceptors. The Journal of physiology. 2017. V. 595(14). P. 4947-4960. doi: 10.1113/JP274211
  171. Müller B., Goodman S. M., Peichl L. Cone photoreceptor diversity in the retinas of fruit bats (Megachiroptera). Brain Behavior and Evolution. 2007. V. 70(2). P. 90-104. doi: 10.1159/000102971
  172. Müller H. Anatomisch-physiologische Untersuchungen über die Retina des Menschen und der Wirbelthiere. Leipzig. Verlag von Wilhelm Engelmann, 1856. 122 p.
  173. Munk O. Ocular anatomy of some deep-sea teleosts. Copenhagen. Andr. Fred. Høst & Søn, 1966. 63 p. doi: 10.1163/9789004628663
  174. Munk O., Rasmussen J.B. Note on the rod‐like photoreceptors in the retina of the snake Telescopus fallax (Fleischmann, 1831). Acta Zoologica. 1993. V. 74(1). P. 9-13. doi: 10.1111/j.1463-6395.1993.tb01216.x
  175. Munz F.W. Photosensitive pigments from the retinae of certain deep-sea fishes. The Journal of physiology. 1958. V. 140(2). P. 220. doi: 10.1113/jphysiol.1958.sp005929
  176. Muradov H., Kerov V., Boyd K.K., Artemyev N.O. Unique transducins expressed in long and short photoreceptors of lamprey Petromyzon marinus. Vision Research. 2008. V. 48(21). P. 2302-2308. doi: 10.1016/j.visres.2008.07.006
  177. Muradov H., Boyd K.K., Kerov V., Artemyev N.O. PDE6 in lamprey Petromyzon marinus: implications for the evolution of the visual effector in vertebrates. Biochemistry. 2007. V. 46(35). P. 9992–10000. doi: 10.1021/bi700535s
  178. Musilova Z., Cortesi F., Matschiner M., Davies W. I., Patel J. S., Stieb S.M., de Busserolles F., Malmstrøm M., Tørresen O.K., Brown C.J., Mountford J.K., Hanel R., Stenkamp D.L., Jakobsen K.S., Carleton K.L., Jentoft S., Marshall N.J., Salzburger W. Vision using multiple distinct rod opsins in deep-sea fishes. Science. 2019. V. 364(6440). P. 588-592. doi: 10.1126/science.aav4632
  179. Musilova Z., Salzburger W., Cortesi F. The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annual review of cell and developmental biology. 2021. V. 37. P. 441-468. doi: 10.1146/annurev-cellbio-120219-024915
  180. Mustafi D., Engel A. H., Palczewski K. Structure of cone photoreceptors. Progress in retinal and eye research. 2009. V. 28(4). P. 289-302. doi: 10.1016/j.preteyeres.2009.05.003
  181. Nagloo N., Collin S.P., Hemmi J.M., Hart N.S. Spatial resolving power and spectral sensitivity of the saltwater crocodile, Crocodylus porosus, and the freshwater crocodile, Crocodylus johnstoni. Journal of Experimental Biology. 2016. V. 219(9). P. 1394-1404. doi: 10.1242/jeb.135673
  182. New S.T., Hemmi J.M., Kerr G.D., Bull C.M. Ocular anatomy and retinal photoreceptors in a skink, the sleepy lizard (Tiliqua rugosa). The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology. 2012. V. 295(10). P. 1727-1735. doi: 10.1002/ar.22546
  183. Nickle B., Robinson P.R. The opsins of the vertebrate retina: insights from structural, biochemical, and evolutionary studies. Cellular and Molecular Life Sciences. 2007. V. 64. P. 2917-2932. doi: 10.1007/s00018-007-7253-1
  184. Nikonov S., Lamb T.D., Pugh Jr E.N. The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse. The Journal of general physiology. 2000. V. 116(6). P. 795-824. doi: 10.1085/jgp.116.6.795
  185. Nilsson S.E.G. An electron microscopic classification of the retinal receptors of the leopard frog (Rana pipiens). Journal of Ultrastructure Research. 1964. V. 10. P. 390–416. doi: 10.1016/S0022-5320(64)80018-6
  186. O’Brien J., Ripps H., Al-Ubaidi M.R. Molecular cloning of a rod opsin cDNA from the skate retina. Gene. 1997. V. 193(2). P. 141-150. doi: 10.1016/S0378-1119(97)00079-6
  187. O’Day K. Visual cells of the guinea pig. Nature. 1947. V. 160(4071). P. 648-648. doi: 10.1038/160648a0
  188. O’Day W.T., Young R.W. Rhythmic daily shedding of outer-segment membranes by visual cells in the goldfish. The Journal of cell biology. 1978. V. 76(3). P. 593-604. doi: 10.1083/jcb.76.3.593
  189. Öhman P. The Photoreceptor Outer Segments of the River Lamprey (Lampreta fluviatilis). An Electron‐, Fluorescence‐and Light Microscopic Study. Acta Zoologica. 1971. V. 52(2). P. 287-297. doi: 10.1111/j.1463-6395.1971.tb00564.x
  190. Öhman P. Fine structure of photoreceptors and associated neurons in the retina of Lampetra fluviatilis (Cyclostomi). Vision research. 1976. V. 16(6). P. 659-IN6. doi: 10.1016/0042-6989(76)90014-6
  191. Pedler C. Rods and cones – a new approach. International review of general and experimental zoology. 1969. V. 4. P. 219-274. doi: 10.1016/B978-0-12-368104-1.50010-9
  192. Pedler C., Tansley K. The fine structure of the cone of a diurnal gecko (Phelsuma inunguis). Experimental eye research. 1963. V. 2(1). P. 39-IN21. doi: 10.1016/S0014-4835(63)80023-8
  193. Pedler C., Tilly R. The nature of the gecko visual cell: A light and electron microscopic study. Vision research. 1964. V. 4(9-10). P. 499-IN18. doi: 10.1016/0042-6989(64)90056-2
  194. Pepperberg D.R., Cornwall M.C., Kahlert M., Hofmann K.P., Jin J., Jones G.J., Ripps H. Light-dependent delay in the falling phase of the retinal rod photoresponse. Visual neuroscience. 1992. V. 8(1). P. 9-18. doi: 10.1017/S0952523800006441
  195. Pinto B.J., Nielsen S.V., Gamble T. Transcriptomic data support a nocturnal bottleneck in the ancestor of gecko lizards. Molecular Phylogenetics and Evolution. 2019. V. 141. P. 106639. doi: 10.1016/j.ympev.2019.106639
  196. Pisani D., Mohun S.M., Harris S.R., MacInerney J.O., Wilkinson M. Molecular evidence for dim-light vision in the last common ancestor of the vertebrates. Current Biology. 2006. V. 16(9). P. R318-R319. doi: 10.1016/j.cub.2006.03.090
  197. Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary biology. 2013. V. 13. P. 1-54. doi: 10.1186/1471-2148-13-93
  198. Reuter T. The synthesis of photosensitive pigments in the rods of the frog’s retina. Vision research. 1966. V. 6(1-2). P. 15-38. doi: 10.1016/0042-6989(66)90011-3
  199. Rieke F., Baylor D.A. Origin and functional impact of dark noise in retinal cones. Neuron. 2000. V. 26. P. 181–186. doi: 10.1016/S0896-6273(00)81148-4
  200. Ripps H., Dowling J.E. Structural features and adaptive properties of photoreceptors in the skate retina. Journal of Experimental Zoology. 1991. V. 256(S5). P. 46-54. doi: 10.1002/jez.1402560508
  201. Rispoli G., Sather W.A., Detwiler P.B. Visual transduction in dialysed detached rod outer segments from lizard retina. The Journal of physiology. 1993. V. 465(1). P. 513-537. doi: 10.1113/jphysiol.1993.sp019691
  202. Röll B. Characterization of retinal oil droplets in diurnal geckos (Reptilia, Gekkonidae). Journal of Experimental Zoology. 2000a. V. 287(7). P. 467-476. doi: 10.1002/1097-010X(20001201)287:7<467::AID-JEZ2>3.0.CO;2-8
  203. Röll B. Gecko vision – visual cells, evolution, and ecological constraints. Journal of neurocytology. 2000b. V. 29(7). P. 471-484. doi: 10.1023/A:1007293511912
  204. Röll B., Horn H.G. The structure of the eye of the monitor lizard Varanus griseus caspius (Reptilia, Varanidae). Advances in Monitor Research II. Mertensiella. Horn H.G., Böhme W. (eds). Rheinbach. Deutsche Gesellschaft für Herpetologie und Terrarienkundeņ, 1999. V. 11. P. 291-306.
  205. Roth L.S.V., Kelber A. Nocturnal colour vision in geckos. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2004. V. 271(suppl. 6). P. S485-S487. doi: 10.1098/rsbl.2004.0227
  206. Sakurai K. Physiological characteristics of photoreceptors in the lamprey, Lethenteron japonicum. 2017. Zoological Science. V. 34(4). P. 326-330. doi: 10.2108/zs170044
  207. Schluessel V., Rick I.P., Seifert F.D., Baumann C., Davies W.I.L. Not just shades of grey: life is full of colour for the ocellate river stingray (Potamotrygon motoro). Journal of Experimental Biology. 2021. V. 224(9). P. jeb226142. doi: 10.1242/jeb.226142
  208. Schott R.K., Fujita M.K., Streicher J.W., Gower D.J., Thomas K.N., Loew E.R., Bamba Kaya A.G., Bittencourt-Silva G.B., Becker C.G., Cisneros-Heredia D., Clulow S., Davila M., Firneno T.J., Haddad C.F.B., Janssenswillen S., Labisko J., Maddock S.T., Mahony M., Martins R.A., Michaels C.J., Mitchell N.J., Portik D.M., Prates I., Roelants K., Roelke C., Tobi E., Woolfolk M., Bell R.C. Diversity and evolution of frog visual opsins: spectral tuning and adaptation to distinct light environments. Molecular biology and evolution. 2024. V. 41(4). P. msae049. doi: 10.1093/molbev/msae049
  209. Schott R.K., Bhattacharyya N., Chang B.S.W. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution. 2019. V. 73(9). P. 1958-1971. doi: 10.1111/evo.13810
  210. Schott R.K., Müller J., Yang C.G.Y., Bhattacharyya N., Chan N., Xu M., Morrow J.M., Ghenu A.H., Loew E.R., Tropepe V., Chang B.S.W. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Proceedings of the National Academy of Sciences. 2016. V. 113(2). P. 356-361. doi: 10.1073/pnas.1513284113
  211. Schott R.K., Panesar B., Card D.C., Preston M., Castoe T.A., Chang B.S. Targeted capture of complete coding regions across divergent species. Genome Biology and Evolution. 2017. V. 9(2). P. 398-414. doi: 10.1093/gbe/evx005
  212. Schott R.K., Van Nynatten A., Card D.C., Castoe T.A., Chang B.S. Shifts in selective pressures on snake phototransduction genes associated with photoreceptor transmutation and dim-light ancestry. Molecular Biology and Evolution. 2018. V. 35(6). P. 1376-1389. doi: 10.1093/molbev/msy025
  213. Schultze M. Zur Anatomie und Physiologie der Retina. Archiv für mikroskopische Anatomie. 1866. V. 2(1). P. 175-286. doi: 10.1007/bf02962033
  214. Schultze M. Über Stäbchen und Zapfen der Retina. Archiv für mikroskopische Anatomie. 1867. V. 3(1). P. 215-247. doi: 10.1007/bf02960456
  215. Schweikert L.E., Fasick J.I., Grace M.S. Evolutionary loss of cone photoreception in balaenid whales reveals circuit stability in the mammalian retina. Journal of Comparative Neurology. 2016. V. 524(14). P. 2873-2885. doi: 10.1002/cne.23996
  216. Shichida Y., Matsuyama T. Evolution of opsins and phototransduction. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009. V. 364(1531). P. 2881-2895. doi: 10.1098/rstb.2009.0051
  217. Siddiqi A., Cronin T.W., Loew E.R., Vorobyev M., Summers K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. Journal of Experimental Biology. 2004. V. 207(14). P. 2471-2485. doi: 10.1242/jeb.01047
  218. Sillman A.J., Carver J.K., Loew E.R. The photoreceptors and visual pigments in the retina of a boid snake, the ball python (Python regius). Journal of Experimental Biology. 1999. V. 202(14). P. 1931-1938. doi: 10.1242/jeb.202.14.1931
  219. Sillman A.J., Johnson J.L., Loew E.R. Retinal photoreceptors and visual pigments in Boa constrictor imperator. Journal of Experimental Zoology. 2001. V. 290(4). P. 359-365. doi: 10.1002/jez.1076
  220. Sillman A.J., Ronan S.J., Loew E.R. Histology and microspectrophotometry of the photoreceptors of a crocodilian, Alligator mississippiensis. Proceedings of the Royal Society of London. Series B: Biological Sciences. 1991. V. 243(1306). P. 93-98. doi: 10.1098/rspb.1991.0016
  221. Sillman A.J., Govardovskii V.I., Röhlich P., Southard J.A., Loew E.R. The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning electron microscopic and immunocytochemical study. Journal of Comparative Physiology A. 1997. V. 181. P. 89-101. doi: 10.1007/s003590050096
  222. Simões B.F., Sampaio F.L., Jared C., Antoniazzi M.M., Loew E.R., Bowmaker J.K., Rodriguez A., Hart N.S., Hunt D.M., Partridge J.C., Gower D.J. Visual system evolution and the nature of the ancestral snake. Journal of evolutionary biology. 2015. V. 28(7). P. 1309-1320. doi: 10.1111/jeb.12663
  223. Simões B.F., Sampaio F.L., Loew E.R., Sanders K.L., Fisher R.N., Hart N.S., Hunt D.M., Partridge J.C., Gower D.J. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2016a. V. 283(1823). P. 20152624. doi: 10.1098/rspb.2015.2624
  224. Simões B.F., Sampaio F.L., Douglas R.H., Kodandaramaiah U., Casewell N.R., Harrison R.A., Hart N.S., Partridge J.C., Hunt D.M., Gower D.J. Visual pigments, ocular filters and the evolution of snake vision. Molecular biology and evolution. 2016b. V. 33(10). P. 2483-2495. doi: 10.1093/molbev/msw148
  225. Smith M.A., Waugh D.A., McBurney D.L., George J.C., Suydam R.S., Thewissen J.G., Crish S.D. A comparative analysis of cone photoreceptor morphology in bowhead and beluga whales. Journal of Comparative Neurology. 2021. V. 529(9). P. 2376-2390. doi: 10.1002/cne.25101
  226. Springer M.S., Emerling C.A., Fugate N., Patel R., Starrett J., Morin P.A., Hayashi C., Gatesy J. Inactivation of cone-specific phototransduction genes in rod monochromatic cetaceans. Frontiers in Ecology and Evolution. 2016. V. 4. P. 61. doi: 10.3389/fevo.2016.00061
  227. Stovall R.H. Observations on the Micro-and Ultrastructure of the Visual Cells of Certain Snakes (Reptilia, Serpentes, Colubridae). Journal of Herpetology. 1976. V. 10(4). P. 269-275. doi: 10.2307/1563063
  228. Strauss O. The retinal pigment epithelium in visual function. Physiological reviews. 2005. V. 85(3). P. 845-881. doi: 10.1152/physrev.00021.2004
  229. Szamier R. B., Ripps H. The visual cells of the skate retina: Structure, histochemistry, and disc‐shedding properties. Journal of Comparative Neurology. 1983. V. 215(1). P. 51-62. doi: 10.1002/cne.902150105
  230. Szél A., Röhlich P., Govardovskii V. Immunocytochemical discrimination of visual pigments in the retinal photoreceptors of the nocturnal gecko Teratoscincus scincus. Experimental eye research. 1986. V. 43(6). P. 895-904. doi: 10.1016/0014-4835(86)90068-0
  231. Tachibanaki S., Arinobu D., Shimauchi-Matsukawa Y., Tsushima S., Kawamura S. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones. Proceedings of the National Academy of Sciences. 2005. V. 102(26). P. 9329-9334. doi: 10.1073/pnas.0501875102
  232. Tachibanaki S., Tsushima S., Kawamura S. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses. Proceedings of the National Academy of Sciences. 2001. V. 98. P. 14044–14049. doi: 10.1073/pnas.241396898
  233. Tachibanaki S., Yonetsu S. I., Fukaya S., Koshitani Y., Kawamura S. Low activation and fast inactivation of transducin in carp cones. Journal of Biological Chemistry. 2012. V. 287(49). P. 41186-41194. doi: 10.1074/jbc.M112.403717
  234. Tansley K. The gecko retina. Vision research. 1964. V. 4(1-2). P. 33-37. doi: 10.1016/0042-6989(64)90029-X
  235. Tansley K. The retina of two nocturnal geckos Hemidactylus turcicus and Tarentola mauritanica. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere. 1959. V. 268. P. 213-220. doi: 10.1007/bf00362521
  236. Toomey M.B., Corbo J.C. Evolution, development and function of vertebrate cone oil droplets. Frontiers in Neural Circuits. 2017. V. 11. P. 97. doi: 10.3389/fncir.2017.00097
  237. Tretjakoff D.K. Sense organs of the river lamprey. University of Novorossijsk, Odessa. 1916. 647 p.
  238. Underwood G. Some suggestions concerning vertebrate visual cells. Vision research. 1968a. V. 8(4). P. 483-488. doi: 10.1016/0042-6989(68)90117-X
  239. Underwood G. A Contribution to the Classification of Snakes. Copeia. 1968b. V. 1968(1). P. 201-213. doi: 10.2307/1441587
  240. Underwood G. The eye. Biology of the Reptilia. Gans C., Parsons T.S. (eds). New York. Academic Press, 1970. V. 2 (Morphology B). P. 1-97.
  241. Underwood G. Reptilian retinas. Nature. 1951. V. 167(4240). P. 183-185. doi: 10.1038/167183a0
  242. Van-Eyk S.M., Siebeck U.E., Champ C.M., Marshall J., Hart N.S. Behavioural evidence for colour vision in an elasmobranch. Journal of Experimental Biology. 2011. V. 214(24). P. 4186-4192. doi: 10.1242/jeb.061853
  243. Vinberg F., Chen J., Kefalov V.J. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Progress in Retinal and Eye Research. 2018. V. 67. P. 87-101. doi: 10.1016/j.preteyeres.2018.06.001
  244. Vorobyev M. Coloured oil droplets enhance colour discrimination. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2003. V. 270(1521). P. 1255-1261. doi: 10.1098/rspb.2003.2381
  245. Wagner H.J., Partridge J.C., Douglas R.H. Observations on the retina and ‘optical fold’of a mesopelagic sabretooth fish, Evermanella balbo. Cell and tissue research. 2019. V. 378. P. 411-425. doi: 10.1007/s00441-019-03060-4
  246. Wald G., Brown P.K., Smith P.H. Iodopsin. The Journal of general physiology. 1955. V. 38(5). P. 623-681. doi: 10.1085/jgp.38.5.623
  247. Walls G.L. Ophthalmological implications for the early history of the snakes. Copeia. 1940. V. 1940(1). P. 1-8. doi: 10.2307/1439015
  248. Walls G.L. The Reptilian Retina: I. A new concept of visual-cell evolution. American journal of ophthalmology. 1934. V. 17(10). P. 892-915. doi: 10.1016/S0002-9394(34)93309-2
  249. Walls G.L. The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, Mich. Cranbrook Institute of Science, 1942. 785 p. doi: 10.5962/bhl.title.7369
  250. Walls G.L. The visual cells of lampreys. The British Journal of Ophthalmology. 1935. V. 19(3). P. 129. doi: 10.1136/bjo.19.3.129
  251. Walls G.L. Visual purple in snakes. Science. 1932. V. 75(1948). P. 467-468. doi: 10.1126/science.75.1948.467
  252. Walls G.L., Judd H.D. The intra-ocular colour-filters of vertebrates. The British journal of ophthalmology. 1933. V. 17(11). P. 641. doi: 10.1136/bjo.17.11.641
  253. Wan Y.C., Navarrete Méndez M.J., O’Connell L.A., Uricchio L.H., Roland A.B., Maan M.E., Ron S.R., Betancourth-Cundar M., Pie M.R., Howell K.A., Richards-Zawacki C.L., Cummings M.E., Cannatella D.C., Santos J.C., Tarvin R.D. Selection on visual opsin genes in diurnal neotropical frogs and loss of the sws2 opsin in poison frogs. Molecular Biology and Evolution. 2023. V. 40(10). P. msad206. doi: 10.1093/molbev/msad206
  254. Warrant E. Vision in the dimmest habitats on earth. Journal of Comparative Physiology A. 2004. V. 190. P. 765-789. doi: 10.1007/s00359-004-0546-z
  255. Warrington R.E., Davies W.I., Hemmi J.M., Hart N.S., Potter I.C., Collin S.P., Hunt D.M. Visual opsin expression and morphological characterization of retinal photoreceptors in the pouched lamprey (Geotria australis, Gray). Journal of Comparative Neurology. 2021. V. 529(9). P. 2265-2282. doi: 10.1002/cne.25092
  256. Wilby D., Toomey M.B., Olsson P., Frederiksen R., Cornwall M.C., Oulton R., Kelber A., Corbo J.C., Roberts N.W. Optics of cone photoreceptors in the chicken (Gallus gallus domesticus). Journal of the Royal Society Interface. 2015. V. 12(111). P. 20150591. doi: 10.1098/rsif.2015.0591
  257. Witkovsky P., Yang C. Y., Ripps H. Properties of a blue-sensitive rod in the Xenopus retina. Vision Research. 1981. V. 21(6). P. 875-883. doi: 10.1016/0042-6989(81)90188-7
  258. Yanagawa M., Kojima K., Yamashita T., Imamoto Y., Matsuyama T., Nakanishi K., Yamano Y., Wada A., Sako Y., Shichida Y. Origin of the low thermal isomerization rate of rhodopsin chromophore. Scientific reports. 2015. V. 5(1). P. 11081. doi: 10.1038/srep11081
  259. Yokoyama S. Molecular Evolution of Vertebrate Visual Pigments. Progress in Retinal and Eye Research. 2000. V. 19(4). P. 385-419. doi: 10.1016/S1350-9462(00)00002-1
  260. Yokoyama S. Evolution of dim-light and color vision pigments. Annual Review of Genomics and Human Genetics. 2008. V. 9. P. 259-282. doi: 10.1146/annurev.genom.9.081307.164228
  261. Yoshida M. Some observations on the patency in the outer segments of photoreceptors of the nocturnal gecko. Vision Research. 1978. V. 18(2). P. 137-143. doi: 10.1016/0042-6989(78)90178-5
  262. Young H.M., Pettigrew J.D. Cone photoreceptors lacking oil droplets in the retina of the echinda, Tachyglossus aculeatus (Monotremata). Visual Neuroscience. 1991. V. 6(5). P. 409-420. doi: 10.1017/S0952523800001279
  263. Young R.W. The daily rhythm of shedding and degradation of rod and cone outer segment membranes in the chick retina. Investigative ophthalmology & visual science. 1978. V. 17(2). P. 105-116.
  264. Yovanovich C.A., Koskela S.M., Nevala N., Kondrashev S.L., Kelber A., Donner K. The dual rod system of amphibians supports colour discrimination at the absolute visual threshold. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2017. V. 372. P. 20160066. doi: 10.1098/rstb.2016.0066
  265. Yovanovich C.A., Pierotti M.E., Rodrigues M.T., Grant T. A dune with a view: the eyes of a neotropical fossorial lizard. Frontiers in zoology. 2019. V. 16. P. 1-10. doi: 10.1186/s12983-019-0310-4
  266. Zhang H., Yokoyama S. Molecular evolution of the rhodopsin gene of marine lamprey, Petromyzon marinus. Gene. 1997. V. 191(1). P. 1-6. doi: 10.1016/S0378-1119(96)00864-5
  267. Zhang X., Wensel T.G., Kraft T.W. GTPase regulators and photoresponses in cones of the eastern chipmunk. Journal of Neuroscience. 2003. V. 23(4). P. 1287-1297. doi: 10.1523/jneurosci.23-04-01287.2003
  268. Zhang X., Wensel T.G., Yuan C. Tokay gecko photoreceptors achieve rod‐like physiology with cone‐like proteins. Photochemistry and photobiology. 2006. V. 82(6). P. 1452-1460. doi: 10.1562/2006-01-05-ra-767
  269. Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular phylogenetics and evolution. 2016. V. 94. P. 537-547. doi: 10.1016/j.ympev.2015.10.009

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Общая морфология типичных палочек и колбочек. Ключевые различия включают в себя форму и ультраструктуру дисков наружного сегмента, наличие/отсутствие масляной капли (характерна для колбочек лопастеперых и ганоидных рыб, амфибий, ящериц, птиц, однопроходных и сумчатых млекопитающих, см. Toomey, Corbo, 2017) и форму синаптического окончания. Свет распространяется по направлению от синаптического окончания к наружному сегменту.

Скачать (327KB)
3. Рис. 2. Упрощенная схема каскада фототрансдукции в палочках позвоночных. В случае колбочек цГМФ-управляемые каналы также локализованы в мембранных дисках (представляющих собой складки плазматической мембраны). Сплошные стрелки обозначают процессы активации каскада, пунктирные – процессы выключения. Обозначение “Ca” соответствует кальций-чувствительным белкам, регулирующим активность опсинкиназы, гуанилатциклазы и цГМФ-управляемых каналов. Условные обозначения: Р – зрительный пигмент (родопсин), Рф – фосфорилированная форма; Т – трансдуцин; ФДЭ – фосфодиэстераза; ГЦ – гуанилатциклаза; ОпК – опсинкиназа; Арр – аррестин. RGS9/Gβ5 – комплекс, ускоряющий инактивацию трансдуцина.

Скачать (289KB)

© Российская академия наук, 2025