Thermodynamic modeling of copper ore processing into matte using borate ores

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The cost of one ton of copper on the London Metal Exchange often reaches 9'000 USD. Such a high price necessitates measures aimed at maximizing the extraction of this metal into final products and minimizing losses. According to open sources, the total amount of copper in technogenic mineral formations of Kazakhmys Corporation LLP (Kazakhstan) is estimated at about 4 million tons. This study proposes measures to reduce copper losses from the pelletizing stage to smelting in metallurgical furnaces. Using full thermodynamic modeling, the effect of boron anhydride and borate ore on the processes of pelletizing, drying, roasting of copper ore concentrates, and matte production was investigated. It was found that the use of B2O3 is expected to increase the strength of wet pellets due to the formation of boron anhydride crystal hydrates (H3BO3), which bind ore particles. During drying, the hydrate loses water at 285 K, turning into boron anhydride, which melts at 723 K during roasting, forming a liquid phase. Upon cooling, this phase creates a solid sinter together with other ore components. Metallurgical processing of such boron-containing material is predicted to improve process performance and reduce matte losses due to the formation of low-viscosity, highly mobile furnace slags. The proposed borate ore contains montmorillonite, a clay mineral typical of bentonites, which ensures sufficient strength of wet pellets for transport from the pelletizing unit to the roasting equipment. The presence of low-melting borate ore in the pellets promotes the formation of a liquid phase during roasting, which solidifies into a strong sinter. As with B2O3, metallurgical smelting is expected to benefit from reduced matte losses due to the formation of lighter, more fluid slags. The calculations and modeling conducted confirm the high potential of the proposed approach for industrial implementation.

全文:

受限制的访问

作者简介

A. Kim

Chemical and Metallurgical Institute named after Zh. Abishev

Email: boron_213@mail.ru
哈萨克斯坦, Karaganda

A. Akberdin

Chemical and Metallurgical Institute named after Zh. Abishev

Email: boron_213@mail.ru
哈萨克斯坦, Karaganda

R. Sultangaziev

Chemical and Metallurgical Institute named after Zh. Abishev

编辑信件的主要联系方式.
Email: boron_213@mail.ru
哈萨克斯坦, Karaganda

A. Orlov

Chemical and Metallurgical Institute named after Zh. Abishev

Email: boron_213@mail.ru
哈萨克斯坦, Karaganda

A. Suleimenov

Chemical and Metallurgical Institute named after Zh. Abishev

Email: boron_213@mail.ru
哈萨克斯坦, Karaganda

参考

  1. Katrenov B.B. Ispol’zovanie mednogo kuporosa v kachestve svyazuyushchego pri poluchenii okatyshей iz mednogo kontsentratа. Materialy mezhdunar. nauch.-prak. konf. “VII chteniya Mashkhur Zhusipa”. Pavlodar: PGU, 2010. 2. pp. 108–114. [In Russian]
  2. Karimova L.M. Poluchenie veroyatnostnoy modeli dinamicheskoy prochnosti okatyshей chernovogo mednogo kontsentratа iz zabalansovoy rudy // Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova. 2012. 4 (40). pp. 19–22. [In Russian]
  3. Karimova L.M. Opredelenie prochnosti granul chernovogo mednomolibdenovogo kontsentratа mestorozhdeniya “Tastau” // Izvestiya vuzov. Tsvetnaya metallurgiya. 2013. 3. pp. 13–18. [In Russian]
  4. Karimova L.M., Zhumashev K.Zh., Kayralapov E.T. Izuchenie prochnostnykh kharakteristik okatyshей iz chernovogo mednogo kontsentratа zabalansovoy rudy pri ispol’zovanii v kachestve svyazuyushchego rastvor serynoy kisloty. Spetsproekt: analiz naukovykh doslidzhen’: materialy VI Mizhnar. nauk.-prakt. internet-konferentsiyi, Dnipropetrovsk, 2011. 3. pp. 56–60. [In Russian]
  5. Paramonov A.I. Osnovy tekhnologii briketirovaniya i okuskovaniya rud. M.: Nedra, 1987. [In Russian]
  6. Levin Ya.I., Vitkovskiy A.A. Tekhnologiya aglomeratsii rud i kontsentratov. M.: Metallurgiya, 1990. [In Russian]
  7. Zaytsev V.Ya. Fiziko-khimicheskie osnovy protsessa aglomeratsii. M.: Nauka, 1976.
  8. Pogorelov Yu.A., Kovalenko V.I. Tekhnologiya obogashcheniya i okuskovaniya mednykh rud. Almaty: Nauka, 2002. [In Russian]
  9. Akberdin A.A. Izbrannye trudy. Karaganda: Ekozhan, 2008. [In Russian]
  10. Udalov Yu.P. Primenenie programmnуkh kompleksov vychislitel’noy i geometricheskoy termodinamiki v proektirovanii tekhnologicheskikh protsessov neorganicheskikh veshchestv: uchebnoe posobie. SPb.: SPbGTI(TU), 2012. [In Russian]
  11. Trusov B.G. Programmnaya sistema TERRA dlya modelirovaniya fazovykh i khimicheskikh ravnovesiy pri vysokikh temperaturakh. III Mezhdunar. simpozium “Gorenie i plazmokhimiya”, 24–26 avgusta 2005. Almaty: Kazak universiteti, 2005. pp. 52–57. [In Russian]
  12. Vanyukov A.V., Zaytsev V.Ya. Shlaki i shteyny tsvetnoy metallurgii (svoystva rasplavov i puti snizheniya potery metallov so shlakami). M.: Metallurgiya, 1969. [In Russian]
  13. Rasslaivanie faz i poteri tsvetnykh metallov [Elektronnyy resurs]. – Rezhim dostupa: https://helpiks.org [In Russian]
  14. Borovik A.I., Kurbanov B.A. Svyazuyushchie materialy v tekhnologii aglomeratsii i briketirovaniya. M.: Nedra, 1981. [In Russian]
  15. Tkachev V.P., Alimov V.A. Mekhanika razrusheniya okatyshей: osnovy prochnosti aglomeratov. Ekaterinburg: UrO RAN, 2003. [In Russian]
  16. Dyakonov N.M. Modelirovanie prochnosti poristykh materialov. ovosibirsk: Nauka, 2006. [In Russian]
  17. Yin W., Wang Y., Zhang L. Strength prediction of iron ore pellets using artificial neural networks // Minerals Engineering. 2015. Vol. 74. P. 52–57.
  18. Chen X., Li J., Liu Q. Effect of binders on the mechanical strength of iron ore pellets // Powder Technology. 2019. Vol. 345. P. 695–702.
  19. Zhao H., Liu Y. Thermodynamic analysis of sulfuric acid as binder in pellet production // Journal of Thermal Analysis and Calorimetry. 2021. Vol. 145. P. 303–311.
  20. Bogoslovskiy N.I., Patrushev Yu.M. Teoriya aglomeratsii. M.: Metallurgiya, 1985. [In Russian]

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Phase composition of the matte (a) and slag parts (b) of granules rounded using industrial water.

下载 (121KB)
3. Fig. 2. Phase composition of gas above concentrate, rounded using industrial water.

下载 (99KB)
4. Fig. 3. Effect of 5% B₂O₃ on the phase composition of granules in the temperature range of 300–1600K.

下载 (78KB)
5. Fig. 4. Phase composition of the matte part of granules with 5% B₂O₃.

下载 (61KB)
6. Fig. 5. Thermodynamics of copper borate formation.

下载 (112KB)
7. Fig. 6. Thermodynamics of calcium borate formation.

下载 (126KB)
8. Fig. 7. Phase composition of the slag part of granules with 5% B₂O₃

下载 (64KB)
9. Fig. 8. Phase composition of the matte part of granules with an additive of 5% Inder borate ore.

下载 (55KB)
10. Fig. 9. Phase composition of the slag portion of granules with an additive of 5% Inder borate ore.

下载 (75KB)
11. Fig. 10. Phase composition of the matte part of granules with an additive of 10% Inder borate ore.

下载 (50KB)
12. Fig. 11. Phase composition of the slag portion of granules with an additive of 10% Inder borate ore.

下载 (74KB)
13. Fig. 12. Composition of the gas phase above granules with an additive of 10% Inder borate ore.

下载 (125KB)

版权所有 © Russian Academy of Sciences, 2025