Application of Low-Frequency Acoustic Signals to Study Underwater Gas Seepage

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Remote sensing of seeps, the release of gas (mainly methane) from the seabed, is an urgent task. The importance of detecting seeps in Arctic shelf zone region is constantly growing due to the degradation of underwater permafrost and the release of gas hydrates. Gas bubbles scatter underwater sound and their resonant frequencies correspond are in the kilohertz range for seeps observed in nature. A promising method for detecting and studying seeps is probing with underwater sound near the denoted resonant frequency. This corresponds to a decrease in the operating frequency relative to the traditional method of studying high-frequency sonars, so the proposed method will be classified as low-frequency in this study. This method expands the study area due to the low sound attenuation in water and the high scattering level near at bubble resonances. Estimates of the scattering strength were carried out taking into account collective interaction (group effects) of bubles. The possibility of using low-frequency hydroacoustic systems to detect seeps has been demonstrated using the results of a full-scale experiment using a simulated bubble jet as an example. A data processing method for detecting nonstationary scatterers is proposed.

Texto integral

Acesso é fechado

Sobre autores

D. Kosteev

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University

Autor responsável pela correspondência
Email: dkosteev@ipfran.ru
Rússia, Nizhny Novgorod; Nizhny Novgorod

N. Bogatov

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: dkosteev@ipfran.ru
Rússia, Nizhny Novgorod

A. Ermoshkin

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University

Email: dkosteev@ipfran.ru
Rússia, Nizhny Novgorod; Nizhny Novgorod

I. Kapustin

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University

Email: dkosteev@ipfran.ru
Rússia, Nizhny Novgorod; Nizhny Novgorod

A. Molkov

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University

Email: dkosteev@ipfran.ru
Rússia, Nizhny Novgorod; Nizhny Novgorod

D. Razumov

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: dkosteev@ipfran.ru
Rússia, Nizhny Novgorod

M. Salin

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: mikesalin@ipfran.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Бондур В. Г., Кузнецова Т. В. Исследования естественных нефте- и газопроявлений на морской поверхности по космическим изображениям // Аэрокосмический мониторинг объектов нефтегазового комплекса, Научный мир, 2012. С. 272.
  2. Shakhova N., Semiletov I. Methane release and coastal environment in the East Siberian Arctic shelf // J. Marine Systems. 2007. V. 66. P. 227–243. https:// doi.org/10.1016/J.JMARSYS.2006.06.006
  3. James R. H., Bousquet P., Bussmann I., Haeckel M., Kipfer R., Leifer I., Niemann H., Ostrovsky I., Piskozub J., Rehder G., Treude T., Vielstadte L., Greinert J. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review // Limnology and Oceanography. 2016. V. 61(S1). P. S283–S299. https://doi.org/10.1002/lno.10307
  4. Ermoshkin A., Molkov A. High-Resolution Radar Sensing Sea Surface States During AMK-82 Cruise // IEEE Journal of selected topics in applied earth observations and remote sensing. 2022. V. 15. P. 2660−2666. https://doi.org/10.1109/JSTARS.2022.3161119
  5. Shakova N., Semiletov I., Serienko V., Lobkovsky L. et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice // Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences. 2015. V. 373. № 2052. https://doi.org/10.1098/rsta.2014.0451
  6. Weidner E., Weber T. C., Mayer L., Jakobssn M., Chernykh D., Semiletov I. A wideband acoustic method for direct assessment of bubble-mediated methane flux // Continental Shelf Research, 2019. V. 173. P. 104. https://doi.org/10.1016/j.csr.2018.12.005
  7. Greinert J., Nutzel B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps // Geo-Marine Letters. 2004. V. 24. № 2. P. 75−84. https://doi.org/10.1007/s00367-003-0165-7
  8. Li J., White P. R., Bull J. M., Leighton T. G., Roche B., Davis J. W. Passive acoustic localization of undersea gas seeps using beamforming. // Int. J. of Greenhouse Gas Control. 2021. V. 108. Article Number 103316.
  9. Prosperetti A., Lu N. Q., Kim H. S. Active and passive acoustic behavior of bubble clouds at the ocean’s surface // J. Acoust. Soc. Am. 1993. V. 93. № 6. P. 3117–3127.
  10. Razaz M., Iorio D. D., Wang B., Daneshgar S., Thurnherr A. M. Variability of a natural hydrocarbon seep and its connection to the ocean surface // Scientific Reports. 2020. V. 10. Article No. 12654. https://doi.org/10.1038/s41598-020-68807-4
  11. Муякшин С. И., Заутер Э. Дистанционный акустический метод определения производительности подводного источника газовых пузырьков // Океанология. 2010. Т. 50. № 6. С. 1045–1051.
  12. Бреховских Л. М., Лысанов Ю. П. Теоретические основы акустики океана. Л.: Гидрометиздат, 1982.
  13. Бритенков А. К., Норкин М. С., Захаров С. Б., Травин Р. В., Стуленков А. В. Сравнительные исследования вибромеханических характеристик компактных гидроакустических преобразователей продольно-изгибного типа со сложной формой излучающей оболочки // Акуст. журн. 2023. Т. 69. № 6. С. 808−816.
  14. Salin M. B., Suvorov A. S. Application of energy relations at modeling scattering by FEM on resonant frequencies // Proc. Meetings on Acoust. 2013. V. 17. Article No. 070081. https://doi.org/10.1121/1.4790418
  15. Вьюгин П. Н., Грязнова И. Ю., Курин В. В., Кустов Л. М. Экспериментальное исследование прямого и обратного рассеяния акустических волн на тонком пузырьковом слое // Акуст. журн. 2006. Т. 52. № 5. С. 636−640.
  16. Акуличев В. А., Буланов В. А. Акустические исследования мелкомасштабных неоднородностей в морской среде. Владивосток: ТОИ ДВО РАН, 2017.
  17. Буланов В. А., Соседко Е. В. Особенности нестационарного и нелинейного рассеяния звука на пузырьках и возможности их спектроскопии // Акуст. журн. 2022. Т. 68. № 4. С. 373−384. https://doi.org/10.31857/S0320791922040025
  18. Урик Р. Д. Основы гидроакустики (пер. с англ. Гусева Н. М.). Л.: Судостроение, 1978.
  19. Bjorno L. Chapter 5 − Scattering of Sound. In Applied Underwater Acoustics. Neighbors T.H.; Bradley D., Eds. Elsevier: Amsterdam, The Netherlands, 2017. P. 302.
  20. Шендеров Е. Л. Излучение и рассеяние звука. Л.: Судостроение, 1989.
  21. Kirkup S. The Boundary Element Method in Acoustics. Integrated Sound Software, 1998/2007. (http://www.cad-cam-cae.com/blog/Kirkup98TBEMIAW.htm)
  22. Салин Б. М., Салин М. Б. Методы измерения бистатических характеристик рассеяния звука дном и поверхностью // Акуст. журн. 2016. Т. 62. № 5. С. 573−581. https://doi.org/10.7868/S0320791916050166
  23. Бялко А. В. Ламинарные цепочки пузырьков: логарифмически точное решение // Докл. Акад. наук. 2011. Т. 436. № 6. С. 747−752.
  24. Ermoshkin A. V., Kapustin I. A., Molkov A. A., Semiletov I. P. Manifestation of gas seepage from bottom sediments on thesea surface: theoretical model and experimental observations // Remote Sensing. 2024. V. 16. № 2. Art. No. 408. https://doi.org/10.3390/rs16020408

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. (a) - Example of unsteady oscillations (unsteady scattering). (b) - Dependence of the target force of an ideal bubble at normal pressure on the radius at a fixed frequency of 1090 Hz

Baixar (163KB)
3. Fig. 2. Target force of 1 m3 (scattering force) of a liquid volume with a = 3 mm bubbles estimated by MGE: at the resonant frequency (f0 = 1087 Hz), near resonance (df = 100 Hz) and within the soft-sphere model

Baixar (157KB)
4. Fig. 3. (a) - Schematic of field experiment - remote sensing: 1 - hydrophone antenna, 2 - hydroacoustic transmitter, 3 - compressor, 4 - generated sip, 5 - radar. (b) - Schematic of in-situ experiment - close-in methods: 6 - stereo camera, 7 - ADCP. (c) - Photo of the sip obtained by one camera of the stereo pair

Baixar (130KB)
5. Fig. 4. Measurement of ADCP vertical velocity during sip generation

Baixar (190KB)
6. Fig. 5. Dependence of vertical velocity on bubble radius

Baixar (96KB)
7. Fig. 6. Radar picture of bubble jet exit to the surface

Baixar (161KB)
8. Fig. 7. Spectral characteristics of the signals recorded in the experiment: (a) - direct signal, (b) - signal scattered on the sip, (c) - non-normalised scattering levels and (d) - example of the pulse shape of the direct signal at a frequency of 2000 Hz. Values (a), (b) and (d) correspond to the signal levels at the elements of the receiving antenna

Baixar (309KB)
9. Fig. 8. Time sweeps of signals received by the antenna phased in the direction to the sip: (a) - LFM signal with correlation processing. The white dashed line indicates the time intervals that contained the signal scattered by the sip. (b) - 2000 Hz tone signal using a filter matched to the signal spectrum

Baixar (390KB)
10. Fig. 9. Bubble column scattering force from time (pulse numbers), locating signal: (a) - tone signal f = 2000 Hz, (b) - LFM signal f = 1500-2500 Hz

Baixar (170KB)
11. Fig. 10. Correlation function of the signals obtained in the 1st cycle and in the subsequent cycles. The first column - autocorrelations. (a) - Direct signals, (b) - echoes from the sip. Signal frequency 2.5 kHz, sampling frequency 24 kHz

Baixar (112KB)
12. Fig. 11. Comparison of the results of basic processing and the described method of inter-pulse subtraction, frequency 2500 Hz, (a) - phased signal level, (b) - phased signal level corrected by range

Baixar (137KB)
13. Fig. 12. Sonogram as a function of vertical angle, averaged over 8 pulses, at a frequency of 2500 Hz using the method of inter-pulse subtraction. Levels of the received signal in dB relative to the conventional unit with range correction correspond to contrast levels

Baixar (142KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024