QUASI-OPTICAL SIMULATIONS OF SCENARIOS WITH THE SECOND HARMONIC ELECTRON CYCLOTRON PLASMA HEATING AT THE GDT FACILITY

Cover Page

Cite item

Full Text

Abstract

The absorption of microwave radiation in the GDT open magnetic trap (Budker Institute of Nuclear Physics) was studied using a new scheme of electron cyclotron resonance plasma heating at the second harmonic, in which radiation in the form of the extraordinary wave was launched almost transverse to the plasma column. When performing numerical simulations, the full-aberration quasi-optical approach was used, which was verified using the first experimental data, obtained at the facility. The optimal scenarios using the new heating system were analyzed. It was found that in the current configuration, the total efficiency of microwave heating does not exceed 60This occurs due to the tangential reflection of heating radiation from the resonance region; this is a wave effect that was previously not taken into account within the framework of the geometric-optics approximation. It was shown that heating at the second harmonic does not result in excitation of the “overheating” instability of the electron component observed during heating at the first harmonic; on the whole, the wide power deposition profile is formed in this case. This is an advantage of the new scheme, since it makes it possible to avoid the development of MHD plasma instabilities associated with peaked power release at the axis of the plasma column.

About the authors

T. A. Khusainov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: hta@appl.sci-nnov.ru
Nizhny Novgorod, 603950 Russia

A. A. Balakin

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, 603950 Russia

E. D. Gospodchikov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, 603950 Russia

A. L. Solomakhin

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences; Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Nizhny Novgorod, 603950 Russia; Novosibirsk, 630090 Russia

A. G. Shalashov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: ags@ipfran.ru
Nizhny Novgorod, 603950 Russia

References

  1. Bagryansky P.A., Gospodchikov E.D., Ivanov A.A., Lizunov A.A., Kolesnikov E.Yu., Konshin Z.E., Korobeynikova A.A., Kovalenko Yu.V., Maximov V.V., Murakhtin S.V., Pinzhenin E.I., Prikhodko V.V., Savkin V.Ya., Shalashov A.G., Skovorodin D.I., Soldatkina E.I., Solomakhin A.L., Yakovlev D.V. // Plasma Fusion Research. 2019. V. 14. P. 2402030. doi: 10.1585/pfr.14.2402030.
  2. Gota H., Binderbauer M.W., Tajima T., Smirnov A., Putvinski S., Tuszewski M., Dettrick S.A., Gupta D.K., Korepanov S., Magee R.M., Park J., Roche T., Romero J.A., Trask E., Yang X., Yushmanov P., Zhai K., DeHaas T., Griswold M.E., Gupta S., Abramov S., Alexander A., Allfrey I., Andow R., Barnett B., Beall M., Bolte N.G. et al. // 2021. Nucl. Fusion. V. 61. P. 106039. doi: 10.1088/1741-4326/ac2521.
  3. Yakovlev D., Chen Z., Bagryansky P., Bragin A., Kotelnikov I., Kuzmin E., Prikhodko V., Shikhovtsev I., Usov P., Wang Z., Zeng Q., Dong L., Zhang K., Ivanov A., Yu J. // Nucl. Fusion. 2022. V. 62. P. 076017. doi: 10.1088/1741-4326/ac5224.
  4. Сковородин Д.И., Черноштанов И.С., Амиров В.Х., Астрелин В.Т., Багрянский П.А., Беклемишев А.Д., Бурдаков А.В., Горбовский А.И., Котельников И.А., Магоммедов Э.М., Полосаткин С.В., Поступаев В.В., Приходько В.В., Савкин В.Я., Солдаткина Е.И., Соломахин А.Л., Сорокин А.В., Судников А.В., Христо М.С., Шиянков С.В., Яковлев Д.В., Щербаков В.И. // Физика плазмы. 2023. Т. 49(9). С. 831. doi: 10.31857/S0367292123600322.
  5. Endrizzi D., Anderson J.K., Brown M., Egedal J., Geiger B., Harvey R.W., Ialovega M., Kirch J., Peterson E., Petrov Yu.V., Pizzo J., Qian T., Sanwalka K., Schmitz O., Wallace J., Yakovlev D., Yu M., Forest C.B. // J. Plasma Phys. 2023. V. 89(5). P. 975890501. doi: 10.1017/S0022377823000806.
  6. Simonen T. C., Horton R. // Nucl. Fusion. 1989. V. 29. P. 1373. Doi : 10.1088/0029-5515/29/8/012.
  7. Bagryansky P.A., Demin S.P., Gospodchikov E.D., Kovalenko Yu.V., Malygin V.I., Murakhtin S.V., Savkin V.Ya., Shalashov A.G., Smolyakova O.B., Solomakhin A.L., Thumm M., Yakovlev D.V. // Fusion Science Technol. 2013. V. 63(1T). P. 40. doi: 10.13182/FST13-A16871.
  8. Bagryansky P.A., Shalashov A.G., Gospodchikov E.D., Lizunov A.A., Maximov V.V., Prikhodko V.V., Soldatkina E.I., Solomakhin A.L., Yakovlev D.V. // Phys. Rev. Lett. 2015. V. 114. P. 205001. doi: 10.1103/PhysRevLett.114.205001.
  9. Bagryansky P.A., Anikeev A.V., Denisov G.G., Gospodchikov E.D., Ivanov A.A., Lizunov A.A., Kovalenko Yu.V., Malygin V.I., Maximov V.V., Korobeinikova O.A., Murakhtin S.V., Pinzhenin E.I., Prikhodko V.V., Savkin V.Ya., Shalashov A.G., Smolyakova O.B., Soldatkina E.I., Solomakhin A.L., Yakovlev D.V., Zaytsev K.V. // Nucl. Fusion. 2015. V. 55. P. 053009. doi: 10.1088/0029-5515/55/5/053009.
  10. Bagryansky P.A., Demin S.P., Gospodchikov E.D., Kovalenko Yu.V., Malygin V.I., Murakhtin S.V., Savkin V.Ya., Shalashov A.G., Smolyakova O.B., Solomakhin A.L., Thumm M., Yakovlev D.V. // Fusion Science Technol. 2015. V. 68. P. 87. doi: 10.13182/FST14-864.
  11. Yakovlev D.V., Shalashov A.G., Gospodchikov E.D., Maximov V.V., Prikhodko V.V., Savkin V.Ya., Soldatkina E.I., Solomakhin A.L., Bagryansky P.A. // Nucl. Fusion. 2018. V. 58. P. 094001. doi: 10.1088/1741-4326/aacb88.
  12. Shalashov A.G., Gospodchikov E.D., Smolyakova O.B., Bagryansky P.A., Malygin V.I., Thumm M. // Phys. Plasmas. 2012. V. 19. P.052503. doi: 10.1063/1.4717757.
  13. Соломахин А.Л., Господчиков Е.Д., Лизунов А.А., Лубяко Л.В., Пинженин Е.И., Смолякова О.Б., Шалашов А.Г. // Тезисы LI Междунар. (Звенигородской) конфер. по физике плазмы и УТС, 18–22 марта 2024. ICPAF-2024. С. 119. doi: 10.34854/ICPAF.51.2024.1.1.081.
  14. Shalashov A.G., Gospodchikov E.D. // Phys. Usp. 2022. V. 65. P. 1303. https://doi.org/10.3367/UFNe.2021.09.039068.
  15. Balakin A.A., Balakina M.A., Smirnov A.I., Permitin G.V. // Plasma Phys. Rep. 2007. V. 33. P. 302. doi: 10.1134/S1063780X07040058.
  16. Balakin A.A. // Radiophysics and Quantum Electronics. 2012. Т. 55. С. 472. doi: 10.1007/s11141-012-9383-z.
  17. Balakin A.A., Gospodchikov E.D., Shalashov A.G. // Jetp Lett. 2016. V. 104. P. 690. doi: 10.1134/S0021364016220057.
  18. Shalashov A.G., Balakin A.A., Khusainov T.A., Gospodchikov E.D., Solomakhin A.L. // J. Experimental Theoret. Phys. 2017. Т. 124. С. 325. doi: 10.1134/S1063776117010162.
  19. Shalashov A.G., Gospodchikov E.D., Khusainov T.A. // Plasma Phys. Rep. 2022. V. 48. P. 1125. doi: 10.1134/S1063780X22601237.
  20. Shalashov A.G., Balakin A.A., Gospodchikov E.D., Khusainov T.A. // Phys. Plasmas. 2016. V. 23. P. 112504. doi: 10.1063/1.4967765.
  21. Shalashov A.G., Gospodchikov E.D., Khusainov T.A., Solomakhin A.L., Yakovlev D.V., Bagryansky P.A. // Nucl. Fusion. 2022. V. 62. P. 124001. doi: 10.1088/1741-4326/ac9293.
  22. Shalashov A.G., Gospodchikov E.D., Khusainov T.A., Lubyako L.V., Solomakhin A.L., Viktorov M.E. // J. Instrumentation. 2021. V. 16 P. 07007. doi: 10.1088/1748-0221/16/07/P07007.
  23. Gospodchikov E.D., Khusainov T.A., Shalashov A.G. // Plasma Phys. Rep. 2022. V. 48. P. 229. doi: 10.1134/S1063780X22030060.
  24. Shalashov A.G., Gospodchikov E.D., Lubyako L.V., Khusainov T.A., Solomakhin A.L., Viktorov M.E. // Radiophysics Quantum Electronics. 2022. V. 65. P. 323. doi: 10.1007/s11141-023-10216-4.
  25. Shalashov A.G., Gospodchikov E.D., Khusainov Т.А., and Solomakhin A.L. // Rev. Sci. Instrum. 2023. V. 94. P. 123506. doi: 10.1063/5.0175160.
  26. Ivanov A.A., Prikhodko V.V. // Plasma Phys. Control. Fusion. 2013. V. 55. P. 063001. doi: 10.1088/0741-3335/55/6/063001.
  27. Иванов А.А., Приходько В.В. // УФН 2017. Т. 187. С. 547. doi: 10.3367/UFNr.2016.09.037967.
  28. Lizunov A., Berbasova T., Khilchenko A., Kvashnin A., Puryga E., Sandomirsky A., Zubarev P. // Rev. Sci. Instrum. 2023. V. 94(3). P. 033509. doi: 10.1063/5.0123329.
  29. Кирнева Н.А., Борщеговский А.А., Куянов А.Ю., Пименов И.С., Рой И.Н. // ВАНТ Сер. Термоядерный синтез. 2021. Т. 44. С. 24. doi: 10.21517/0202-3822-2021-44-3-24-36.
  30. Balakin A.A., Balakina M.A., Westerhof E. // Nuclear Fusion. 2008. V. 48. P. 065003. doi: 10.1088/0029-5515/48/6/065003.
  31. Stix T.H. The Theory of Plasma Waves. New York: McGraw-Hill, 1962
  32. Gospodchikov E.D., Suvorov E.V. // Radiophysics Quantum Electronics. 2005. V. 48. P. 569. doi: 10.1007/s11141-005-0101-y.
  33. Sakharov A.S. // Plasma Phys. Rep. 2017. V. 43. P. 1065. doi: 10.1134/S1063780X17110083.
  34. Shkarofsky I.P. // J. Plasma Physics. 1986. V. 35. P. 319. doi: 10.1017/S0022377800011363.
  35. Balakin A.A., Gospodchikov E. D. // J. Phys. B: Atomic, Molecular, Opt. Phys. 2015. V. 48. P. 215701. doi: 10.1088/0953-4075/48/21/215701.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences