Application of dual-wavelength digital holographic interferometry for optical nondestructive wear testing of protective elements of the spherical tokamak Globus-M2

Cover Page

Cite item

Full Text

Abstract

The possibility of using the method of dual-wavelength digital holographic interferometry to assess the wear of protective elements of the Globus-M2 spherical tokamak after working plasma discharges is demonstrated. At this stage of the work, the protective elements were removed from the tokamak discharge chamber and used as samples in the holographic setup. A diagram of a holographic interferometer for recording primary holographic images is presented, in which control of the radiation wavelength recording and monitoring systems is carried out through a hardware and software complex in real time. The results of measurements of the shape of tokamak elements are presented. It is shown that when the difference in wavelengths changes, the sensitivity of the measurement method changes, and in the proposed configuration of the optical scheme it is possible to determine the minimum value of the shape change at a level of 10–30 μm. At the same time, the error in determining the phase difference, by which the surface profile is assessed, in the digital method can reach about 2π/40.

About the authors

I. V. Alekseenko

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: IAlekseenko@kantiana.ru
Russian Federation, Kaliningrad, 236041

A. M. Kozhevnikova

Immanuel Kant Baltic Federal University

Email: IAlekseenko@kantiana.ru
Russian Federation, Kaliningrad, 236041

A. G. Razdobarin

Ioffe Institute, Russian Academy of Sciences

Email: IAlekseenko@kantiana.ru
Russian Federation, St. Petersburg, 194021

D. I. Elets

Ioffe Institute, Russian Academy of Sciences

Email: IAlekseenko@kantiana.ru
Russian Federation, St. Petersburg, 194021

O. S. Medvedev

Ioffe Institute, Russian Academy of Sciences

Email: IAlekseenko@kantiana.ru
Russian Federation, St. Petersburg, 194021

References

  1. De Temmerman G., Hirai T., Pitts R.A. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 044018. doi: 10.1088/1361-6587/aaaf62.
  2. Schweer B., Huber A., Sergienko G., Philipps V., Irrek F., Esser H.G., Samm U., Kempenaars M., Stamp M., Gowers C., Richards D. // J. Nucl. Mater. 2005. V. 337–339. P. 570. doi: 10.1016/j.jnucmat.2004.10.156.
  3. Pintsuk G., Bobin-Vastra I., Constans S., Gavila P., Rödig M., Riccardi B. // Fusion Eng. Des. 2013. V. 88. P. 1858. doi: 10.1016/j.fusengdes.2013.05.091.
  4. Кукушкин А.С., Пшенов А.А. // Физика плазмы. 2021. Т. 47. С. 1123.
  5. Pedrini G., Alekseenko I., Jagannathan G., Kempenaars M., Vayakis G., Osten W. // Applied Optics. 2019. V. 8(5). P. A147.
  6. Belashov A.V., Zhikhoreva A.A., Semenova I.V. // Applied Sciences. 2022. V. 12. P. 1687.
  7. Kozhevnikova A.M., Alekseenko I.V., Schitz D.V. // Applied Optics. 2023. Т. 62. С. 7881.
  8. Friesem A.A., Levy U. // Applied Optics. 1976. V. 15. P. 3009.
  9. Claus D., Alekseenko I., Grabherr M., Pedrini G., Hibst R. // Light: Advanced Manufacturing. 2021. V. 2(4). P. 403.
  10. Schnars U., Jueptner W. Digital holography: digital hologram recording, numerical reconstruction, and related techniques. Berlin: Springer, 2005.
  11. Takeda M., Ina H., Kobayashi S. // J. Optical Soc. America. 1982. V. 72.1. P. 156.
  12. Kreis T. Handbook of holographic interferometry: optical and digital methods. N.Y.: John Wiley & Sons, 2006.
  13. Claus D., Alekseenko I., Grabherr M., Pedrini G., Hibst R. // Light: Advanced Manufacturing. 2021. V. 2. P. 29.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences