Possibilities of Using Active Neutral Particle Diagnostics at the TRT Facility

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The possibilities of using active neutral particle diagnostics for measuring local ion temperatures and isotopic ratio of deuterium-tritium plasma at the tokamak with reactor technologies are considered. Options for positioning the neutral particle analyzer relative to the diagnostic injector are presented. The fluxes of deuterium and tritium atoms escaping out of plasma were simulated in a wide range of plasma densities and temperatures. It is shown that the neutral particle analyzer active diagnostics will make it possible to measure the plasma parameters mentioned with the spatial and time resolutions of ~14 cm and ~0.01—0.1 s, respectively.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Afanasyev

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Ресей, St. Petersburg, 194021

A. Melnik

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Ресей, St. Petersburg, 194021

M. Mironov

Ioffe Institute, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: maxim@npd.ioffe.ru
Ресей, St. Petersburg, 194021

A. Navolotsky

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Ресей, St. Petersburg, 194021

V. Nesenevich

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Ресей, St. Petersburg, 194021

M. Petrov

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Ресей, St. Petersburg, 194021

S. Petrov

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Ресей, St. Petersburg, 194021

F. Chernyshev

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Ресей, St. Petersburg, 194021

R. Shmitov

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Ресей, St. Petersburg, 194021

Әдебиет тізімі

  1. Красильников А. В., Коновалов С. В., Бондарчук Э. Н., Мазуль И. В., Родин И. Ю., Минеев А. Б., Кузьмин Е. Г., Кавин А.А, Карпов Д. А., Леонов В. М., Хайрутдинов Р. Р., Кукушкин А. С., Портнов Д. В., Иванов А. А., Бельченко Ю. И., Денисов Г. Г. // Физика плазмы. 2021. Т. 47. C. 970. doi: 10.31857/S0367292121110196.
  2. Афанасьев В. И., Гончаров П. Р., Мельник А. Д., Миронов М. И., Наволоцкий А. С., Несеневич В. Г., Петров М. П., Петров С. Я., Чернышев Ф. В. // Физика плазмы. 2022. T. 48. С. 675. doi: 10.31857/S0367292122100031.
  3. Миронов М. И., Чернышев Ф. В., Афанасьев В. И., Мельник А. Д., Наволоцкий А. С., Несеневич В. Г., Петров М. П., Петров С. Я. // Физика плазмы. 2021. T. 47. С. 29. doi: 10.31857/S0367292121010108.
  4. Леонов В. М., Коновалов С. В., Жоголев В. Е., Кавин А. А., Красильников А. В., Куянов А. Ю., Лукаш В. Э., Минеев А. Б., Хайрутдинов Р. Р. // Физика плазмы. 2021. Т. 47. C. 986. doi: 10.31857/S0367292121120040.
  5. Давыденко В. И., Иванов А. А., Ступишин Н. В. // Физика плазмы. 2022. Т. 48. С. 694. doi: 10.31857/S0367292122100080.
  6. Ryutov D. // Phys. Scr. 1992. V. 45 P. 153.
  7. Ballabio L., Gorini G., Kallne J. // Phys. Rev. E. 1997. V. 55 P. 3358.
  8. Afanasyev V. I., Chernyshev F. V., Kislyakov A. I., Kozlovski S. S., Lyublin B. V., Mironov M. I., Melnik A. D., Nesenevich V. G., Petrov M. P., Petrov S. Ya. // Nucl. Instr. Meth. Phys. Res. A. 2010. V. 621. P. 456. doi: 10.1016/j.nima.2010.06.201.
  9. Петров С. Я., Афанасьев В. И., Мельник А. Д., Миронов М. И., Наволоцкий А. С., Несеневич В. Г., Петров М. П., Чернышев Ф. В., Кедров И. В., Кузьмин Е. Г., Люблин Б. В., Козловский С. С., Мокеев А. Н. // ВАНТ Сер. Термоядерный синтез. 2016. Т. 39. № 1. С. 68. doi: 10.21517/0202-3822-2016-1-67-80.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Variants of the relative position of the observation line of the recharge atom analyzer and the injection line of the diagnostic beam at the TRT installation: in the equatorial plane (a); in the vertical plane (b).

Жүктеу (198KB)
3. Fig. 2. Spatial distribution of donor atoms along the central line of observation of the analyzer for the case of a tangential observation scheme. Beam — the density of atoms of the diagnostic beam; Halo — the density of atoms secondary formed on the beam; Wall — the density of atoms coming from the wall. The dotted line indicates the position of the magnetic axis of the plasma.

Жүктеу (65KB)
4. Fig. 3. Spatial profiles of luminosity functions of atoms flying out of plasma along the central line of observation of the analyzer: tangential observation scheme (a); vertical observation scheme (b). Dashed lines indicate profiles in the absence of a beam.

Жүктеу (112KB)
5. Fig. 4. The counting rate of deuterium and tritium atoms in the detector channels of the analyzer for the basic scenario of a TRT discharge: tangential observation scheme (a); vertical observation scheme (b).

Жүктеу (102KB)
6. Fig. 5. The counting rate of deuterium and tritium atoms in the detector channels of the analyzer for a vertical monitoring scheme in TRT discharges with reduced parameters: Te, i(0) = 5 keV, 〈ne〉 = 1 · 1014 cm−3 (a); Te, i(0) = 5 keV, 〈ne〉 = 0.5 · 1014 cm−3 (b).

Жүктеу (89KB)
7. Fig. 6. The counting rate of neutralized knock-on ions in the detector channels of the analyzer for the basic scenario of TRT discharge. The observation scheme is tangential.

Жүктеу (55KB)

© Russian Academy of Sciences, 2024