High Dynamic Range Retarding Potential Analyzer Operation Verification

封面

如何引用文章

全文:

详细

Probe diagnostics of ion energy distribution and ion current density in the plasma plume of electricpropulsion is considered. A detailed numerical and experimental comparison is presented of a new, highdynamic range retarding potential analyzer (HDR RPA) and a conventional gridded RPA probe applied to aplume of a hall effect thruster (HET) operating in different modes. Simulations show the disadvantages of thegridded retarding potential analyzer design and the advantages of the HDR RPA. By means of numericalmodeling, the peculiarities of using the HDR RPA are also investigated in detail and preliminary conclusionsregarding the probe accuracy are drawn. The final part of the paper shows the results of joint tests of the twoprobes at those plasma parameters where the gridded probe works most accurately, with a confirmed maximumerror of 5%.

作者简介

D. Maystrenko

Keldysh Research Center; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438; Moscow, 141701

A. Shagayda

Keldysh Research Center

Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438

D. Tomilin

Keldysh Research Center

Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438

D. Kravchenko

Keldysh Research Center

Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438

M. Selivanov

Keldysh Research Center

Email: maystrenko.da@phystech.edu
俄罗斯联邦, Moscow, 125438

参考

  1. Lev D., Myers R.M., Lemmer K.M., Kolbeck J., Koizumi H., Polzin K. // Acta Astronaut. 2019. V. 159. P. 213.
  2. Levchenko I., Xu S., Mazouffre S., Lev D., Pedrini D., Goebel D., Garrigues L., Taccogna F., Bazaka K. // Phys. Plasmas. 2020. V. 27. P. 020601.
  3. Gong S., Li J. // Sci. China Phys., Mechanics Astron. 2014. V. 57. P. 521531.
  4. Dale E., Jorns B., Gallimore A. // Aerospace. 2020. V. 7. P. 120.
  5. Gorshkov O.A., Shagayda A.A. // Tech. Phys. Lett. 2008. V. 34. P. 153.
  6. Trottenberg T., Bansemer F., Böttcher S., Feili D., Henkel H., Hesse M., Kersten H., Krüger T., Laube J., Lazurenko A., Sailer D., Schuster B., Seimetz L., Spethmann A., Weis S., Wimmer-Schweingruber R.F. // EPJ Techniques and Instrumentation. 2021. V. 8. P. 16.
  7. Hutchinson H. Principles of Plasma Diagnostics. Cambridge: Cambridge Univ. Press, 1987.
  8. Ya-li M., Fu-jun T., Yu-xiong X., Yi-feng C., Xin G., Yi W., Kai T., Ze-dong Y. // Int. J. Mech., Aerosp., Ind., Mechatron. Manuf. Eng. 2012. V. 6. P. 11.
  9. Heubel E.V. Enhancing Retarding Potential Analyzer Energy Measurements with Micro-Aligned Electrodes. Massachusetts Institute of Technology, 2021.
  10. Zhang Z., Tang H., Zhang Z., Wang J., Cao Sh. // Rev. Sci. Instrum. 2016. V. 87. P. 123510.
  11. Lemmer K.M., Gallimore A.D., Smith T.B., Austin D.R. // IEPC-2007-161, 30th Internat. Electric Propulsion Confer., 2007.
  12. Harmann H., Koch N., Kornfeld G. // IEPC-2007-119, Internat. Electric Propulsion Confer., 2007
  13. Hey F.G., Vaupel M., Groll C., Braxmaier C., Tajmar M., Sell A., Eckert K., Weise D., Saks N., Johann U. // IEPC-2017-271, 35th Internat. Electric Propulsion Confer., Atlanta, GA, 2017.
  14. Maystrenko D., Shagayda A., Kravchenko D., Lovtsov A. // Rev. Sci. Instrum. 2022. V. 93. P. 073504.
  15. Goebel D.M., Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Jet Propulsion Laboratory California Institute of Technology, 2008.
  16. Shagayda A., Nikitin V., Tomilin D. // Vacuum. 2016. V. 123. P. 140.
  17. Goebel D. M., Becatti G. // Rev. Sci. Instrum. 2021. V. 92. P. 013511.
  18. Tomilin D., Lovtsov A. // Electric Propulsion Confer., University of Vienna, Vienna, Austria September 15–20, 2019. IEPC-2019-342.
  19. Walker M.L.R., Hofer R.R., Gallimore A.D. // J. Propulsion Power. 2016. V. 22. P. 205.
  20. Azziz Y., Martinez-Sanchez M. Experimental and Theoretical Characterization of a Hall Thruster Plume. Massachusetts Institute of Technology, 2007.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024