Application of dual-wavelength digital holographic interferometry for optical nondestructive wear testing of protective elements of the spherical tokamak Globus-M2

封面

如何引用文章

全文:

详细

The possibility of using the method of dual-wavelength digital holographic interferometry to assess the wear of protective elements of the Globus-M2 spherical tokamak after working plasma discharges is demonstrated. At this stage of the work, the protective elements were removed from the tokamak discharge chamber and used as samples in the holographic setup. A diagram of a holographic interferometer for recording primary holographic images is presented, in which control of the radiation wavelength recording and monitoring systems is carried out through a hardware and software complex in real time. The results of measurements of the shape of tokamak elements are presented. It is shown that when the difference in wavelengths changes, the sensitivity of the measurement method changes, and in the proposed configuration of the optical scheme it is possible to determine the minimum value of the shape change at a level of 10–30 μm. At the same time, the error in determining the phase difference, by which the surface profile is assessed, in the digital method can reach about 2π/40.

作者简介

I. Alekseenko

Immanuel Kant Baltic Federal University

编辑信件的主要联系方式.
Email: IAlekseenko@kantiana.ru
俄罗斯联邦, Kaliningrad, 236041

A. Kozhevnikova

Immanuel Kant Baltic Federal University

Email: IAlekseenko@kantiana.ru
俄罗斯联邦, Kaliningrad, 236041

A. Razdobarin

Ioffe Institute, Russian Academy of Sciences

Email: IAlekseenko@kantiana.ru
俄罗斯联邦, St. Petersburg, 194021

D. Elets

Ioffe Institute, Russian Academy of Sciences

Email: IAlekseenko@kantiana.ru
俄罗斯联邦, St. Petersburg, 194021

O. Medvedev

Ioffe Institute, Russian Academy of Sciences

Email: IAlekseenko@kantiana.ru
俄罗斯联邦, St. Petersburg, 194021

参考

  1. De Temmerman G., Hirai T., Pitts R.A. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 044018. doi: 10.1088/1361-6587/aaaf62.
  2. Schweer B., Huber A., Sergienko G., Philipps V., Irrek F., Esser H.G., Samm U., Kempenaars M., Stamp M., Gowers C., Richards D. // J. Nucl. Mater. 2005. V. 337–339. P. 570. doi: 10.1016/j.jnucmat.2004.10.156.
  3. Pintsuk G., Bobin-Vastra I., Constans S., Gavila P., Rödig M., Riccardi B. // Fusion Eng. Des. 2013. V. 88. P. 1858. doi: 10.1016/j.fusengdes.2013.05.091.
  4. Кукушкин А.С., Пшенов А.А. // Физика плазмы. 2021. Т. 47. С. 1123.
  5. Pedrini G., Alekseenko I., Jagannathan G., Kempenaars M., Vayakis G., Osten W. // Applied Optics. 2019. V. 8(5). P. A147.
  6. Belashov A.V., Zhikhoreva A.A., Semenova I.V. // Applied Sciences. 2022. V. 12. P. 1687.
  7. Kozhevnikova A.M., Alekseenko I.V., Schitz D.V. // Applied Optics. 2023. Т. 62. С. 7881.
  8. Friesem A.A., Levy U. // Applied Optics. 1976. V. 15. P. 3009.
  9. Claus D., Alekseenko I., Grabherr M., Pedrini G., Hibst R. // Light: Advanced Manufacturing. 2021. V. 2(4). P. 403.
  10. Schnars U., Jueptner W. Digital holography: digital hologram recording, numerical reconstruction, and related techniques. Berlin: Springer, 2005.
  11. Takeda M., Ina H., Kobayashi S. // J. Optical Soc. America. 1982. V. 72.1. P. 156.
  12. Kreis T. Handbook of holographic interferometry: optical and digital methods. N.Y.: John Wiley & Sons, 2006.
  13. Claus D., Alekseenko I., Grabherr M., Pedrini G., Hibst R. // Light: Advanced Manufacturing. 2021. V. 2. P. 29.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024