General scaling behavior of superconductors

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The physics of high-T c superconductors, which has been a major topic in condensed matter physics for more than thirty years, reveals some features of conventional superconductors. We analyze the scaling of the condensation energy E Δ divided by γ, E Δ/γ≃N(0)Δ1 2/γ, that equally applicable to both conventional and unconventional high-T c superconductors. Here N(0) is the density of states, Δ1 is the maximum value of the superconducting gap and γ is the Sommerfeld coefficient. Basing on this observation, we analyze experimental facts that reveal the general scaling properties of both high-T c and ordinary superconductors, and theoretically explain that the Homes' law ρs0T cσ(T c) is applicable to the both types of superconductors. Here σ is the conductivity, T is temperature and T c is the temperature of superconduction phase transition, λD is the zero-T penetration depth, and ρs0 is the superconducting electron density. For the first time, we also explain the reason of violation of the Homes' law. Our theoretical results agree well with experimental facts.

Sobre autores

V. Shaginyan

Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre Kurchatov Institute; Department of Physics, Clark Atlanta University

Email: vrshag@thd.pnpi.spb.ru
Gatchina, Russia; Atlanta, USA

A. Msezane

Department of Physics, Clark Atlanta University

Atlanta, USA

S. Artamonov

Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre Kurchatov Institute

Gatchina, Russia

Bibliografia

  1. J. S. Kim, G. N. Tam, and G. R. Stewart, Phys. Rev. B 92, 224509 (2015)
  2. H. Matsui, T. Sato, T. Takahashi, S.-C. Wang, H.-B. Yang, H. Ding, T. Fujii, T. Watanabe, and A. Matsuda, Phys. Rev. Lett. 90, 217002 (2003)
  3. K.-J. Xu, Qinda Guo, M. Hashimoto, Z.-X. Li, S.-D. Chen, J. He, Y. He, C. Li, M. H. Berntsen, C. R. Rotundu, Y. S. Lee, T. P. Devereaux, A. Rydh, D. H. Lu, D. H. Lee, O. Tjernberg, and Z. X. Shen, Nature Phys. 19, 1834 (2023)
  4. V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010)
  5. W. Qin, B. Zou, and A. H. MacDonald, Phys. Rev. B 107, 024509 (2023)
  6. V. R. Shaginyan, A. Z. Msezane, M. Ya. Amusia, and G. S. Japaridze, EPL 138, 16004 (2022)
  7. J. Bardeen, L. N. Cooper, and J. R. Schriffer, Phys. Rev. 108, 1175 (1957)
  8. M. Ya. Amusia and V. R. Shaginyan, Phys. Rev. B 63, 224507 (2001)
  9. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990)
  10. V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249, 1 (1994)
  11. T. T. Heikkila and G. E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, Springer Series in Materials Science, Springer Nature Switzerland AG, Cham (2016), v. 244
  12. G. E. Volovik, Phys. Scr. T 164, 014014 (2015)
  13. P. Rosenzweig, H. Karakachian, D. Marchenko, K. Kuster, and U. Starke, Phys. Rev. Lett. 125, 176403 (2020)
  14. P. T¨orm¨a, S. Peotta, and B.A. Bernevig, Nat. Rev. Phys. 4, 528 (2022)
  15. V. Peri, Z. D. Song, B. A. Bernevig, and S. D. Huber, Phys. Rev. Lett. 126, 027002 (2021)
  16. V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Phys. Rev. B 86, 085147 (2012)
  17. V. R. Shaginyan, K. G. Popov, and V. A. Khodel, Phys. Rev. B 88, 115103 (2013)
  18. A. Shekhter, M. K. Chan, R. D. MacDonald, and N. Harrison, arXiv:2504.02179
  19. C. C. Homes, S. V. Dordevic, M. Strongin, D. A. Bonn, R. Liang, W. N. Hardy, S. Komiya, Y. Ando, G. Yu, N. Kaneko, X. Zhao, M. Greven, D. N. Basov, and T. Timusk, Nature 430, 539 (2004)
  20. V. G. Kogan, Phys. Rev. B 87, 220507(R) (2013)
  21. C. C. Homes, S. V. Dordevic, T. Valla, and M. Strongin, Phys. Rev. B 72, 134517 (2005)
  22. S. V. Dordevic, D. N. Basov, and C. C. Homes, Sci. Rep. 3, 1713 (2013)
  23. J. T. Heath and R. Boyack, Phys. Rev. Lett. 134, 216002 (2025)
  24. V. R. Shaginyan, V. A. Stephanovich, A. Z. Msezane, G. S. Japaridze, and K. G. Popov, Phys. Chem. Chem. Phys. 19, 21964 (2017)
  25. J. I. Boˆzovi´c, X. He, J. Wu, and A. T. Bollinger, Nature 536, 309 (2016)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025