General scaling behavior of superconductors
- 作者: Shaginyan V.R1,2, Msezane A.Z2, Artamonov S.A1
-
隶属关系:
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre Kurchatov Institute
- Department of Physics, Clark Atlanta University
- 期: 卷 122, 编号 3-4 (2025)
- 页面: 153-155
- 栏目: Articles
- URL: https://medjrf.com/0370-274X/article/view/693457
- DOI: https://doi.org/10.31857/S0370274X25080052
- EDN: https://elibrary.ru/GUDZOE
- ID: 693457
如何引用文章
详细
The physics of high-T c superconductors, which has been a major topic in condensed matter physics for more than thirty years, reveals some features of conventional superconductors. We analyze the scaling of the condensation energy E Δ divided by γ, E Δ/γ≃N(0)Δ1 2/γ, that equally applicable to both conventional and unconventional high-T c superconductors. Here N(0) is the density of states, Δ1 is the maximum value of the superconducting gap and γ is the Sommerfeld coefficient. Basing on this observation, we analyze experimental facts that reveal the general scaling properties of both high-T c and ordinary superconductors, and theoretically explain that the Homes' law ρs0∝T cσ(T c) is applicable to the both types of superconductors. Here σ is the conductivity, T is temperature and T c is the temperature of superconduction phase transition, λD is the zero-T penetration depth, and ρs0 is the superconducting electron density. For the first time, we also explain the reason of violation of the Homes' law. Our theoretical results agree well with experimental facts.
作者简介
V. Shaginyan
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre Kurchatov Institute; Department of Physics, Clark Atlanta University
Email: vrshag@thd.pnpi.spb.ru
Gatchina, Russia; Atlanta, USA
A. Msezane
Department of Physics, Clark Atlanta UniversityAtlanta, USA
S. Artamonov
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre Kurchatov InstituteGatchina, Russia
参考
- J. S. Kim, G. N. Tam, and G. R. Stewart, Phys. Rev. B 92, 224509 (2015)
- H. Matsui, T. Sato, T. Takahashi, S.-C. Wang, H.-B. Yang, H. Ding, T. Fujii, T. Watanabe, and A. Matsuda, Phys. Rev. Lett. 90, 217002 (2003)
- K.-J. Xu, Qinda Guo, M. Hashimoto, Z.-X. Li, S.-D. Chen, J. He, Y. He, C. Li, M. H. Berntsen, C. R. Rotundu, Y. S. Lee, T. P. Devereaux, A. Rydh, D. H. Lu, D. H. Lee, O. Tjernberg, and Z. X. Shen, Nature Phys. 19, 1834 (2023)
- V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010)
- W. Qin, B. Zou, and A. H. MacDonald, Phys. Rev. B 107, 024509 (2023)
- V. R. Shaginyan, A. Z. Msezane, M. Ya. Amusia, and G. S. Japaridze, EPL 138, 16004 (2022)
- J. Bardeen, L. N. Cooper, and J. R. Schriffer, Phys. Rev. 108, 1175 (1957)
- M. Ya. Amusia and V. R. Shaginyan, Phys. Rev. B 63, 224507 (2001)
- V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990)
- V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249, 1 (1994)
- T. T. Heikkila and G. E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, Springer Series in Materials Science, Springer Nature Switzerland AG, Cham (2016), v. 244
- G. E. Volovik, Phys. Scr. T 164, 014014 (2015)
- P. Rosenzweig, H. Karakachian, D. Marchenko, K. Kuster, and U. Starke, Phys. Rev. Lett. 125, 176403 (2020)
- P. T¨orm¨a, S. Peotta, and B.A. Bernevig, Nat. Rev. Phys. 4, 528 (2022)
- V. Peri, Z. D. Song, B. A. Bernevig, and S. D. Huber, Phys. Rev. Lett. 126, 027002 (2021)
- V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Phys. Rev. B 86, 085147 (2012)
- V. R. Shaginyan, K. G. Popov, and V. A. Khodel, Phys. Rev. B 88, 115103 (2013)
- A. Shekhter, M. K. Chan, R. D. MacDonald, and N. Harrison, arXiv:2504.02179
- C. C. Homes, S. V. Dordevic, M. Strongin, D. A. Bonn, R. Liang, W. N. Hardy, S. Komiya, Y. Ando, G. Yu, N. Kaneko, X. Zhao, M. Greven, D. N. Basov, and T. Timusk, Nature 430, 539 (2004)
- V. G. Kogan, Phys. Rev. B 87, 220507(R) (2013)
- C. C. Homes, S. V. Dordevic, T. Valla, and M. Strongin, Phys. Rev. B 72, 134517 (2005)
- S. V. Dordevic, D. N. Basov, and C. C. Homes, Sci. Rep. 3, 1713 (2013)
- J. T. Heath and R. Boyack, Phys. Rev. Lett. 134, 216002 (2025)
- V. R. Shaginyan, V. A. Stephanovich, A. Z. Msezane, G. S. Japaridze, and K. G. Popov, Phys. Chem. Chem. Phys. 19, 21964 (2017)
- J. I. Boˆzovi´c, X. He, J. Wu, and A. T. Bollinger, Nature 536, 309 (2016)
补充文件
