Comparison of spiral waves in simplified cardiac tissue models

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Spiral waves of electrical activation in cardiac tissue can lead to life-threatening arrhythmias; therefore, understanding the mechanisms underlying the formation and propagation of these spiral waves is of great interest in cardiac dynamics. In this study, we conduct a comparative analysis of spiral waves using two simplified component models for cardiac tissue (a) the Panfilov model and (b) the Aliev-Panfilov model, by varying the parameters that govern excitability and recovery in both models. From our numerical studies, we observe states of (i) a periodic spiral, (ii) a quasi-periodic spiral, and (iii) spiral turbulence in both models, depending on the parameters. Our systematic study reveals that the Panfilov model exhibits conduction velocity restitution behavior and spiral transition sequences that closely resemble those observed in biophysical models; thus, it is better suited for studying wave dynamics in cardiac tissue compared to the Aliev-Panfilov model, providing an alternative to computationally expensive cardiac tissue models.

Sobre autores

S. Mohanty

International Institute of Information Technology (IIIT) Bhubaneswar

Email: aloknayak@iiit-bh.ac.in
Bhubaneswar, India

D. Prusty

International Institute of Information Technology (IIIT) Bhubaneswar

Autor responsável pela correspondência
Email: aloknayak@iiit-bh.ac.in
Bhubaneswar, India

A. Nayak

International Institute of Information Technology (IIIT) Bhubaneswar

Email: aloknayak@iiit-bh.ac.in
Bhubaneswar, India

Bibliografia

  1. S. Sawai, P. A. Thomason, and E. C. Cox, Nature 433, 323 (2005).
  2. J. Lechleiter, S. Girard, E. Peralta, and D. Clapham, Science 252, 123 (1991).
  3. Y. Yu, L. M. Santos, L. A. Mattiace, M. L. Costa, L. C. Ferreira, K. Benabou, A. H. Kim, J. Abrahams, M. V. Bennett, and R. Rozental, Proceedings of the National Academy of Sciences 109, 2585 (2012).
  4. X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff, and J.-Y. Wu, J. Neurosci. 24, 9897 (2004).
  5. S. Alonso, M. B¨ar, and B. Echebarria, Reports on Progress in Physics 79, 096601 (2016).
  6. F. H. Fenton, E. M. Cherry, H. M. Hastings, and S. J. Evans, Chaos: An Interdisciplinary Journal of Nonlinear Science 12, 852 (2002).
  7. A. Panfilov and P. Hogeweg, Phys. Lett. A 176, 295 (1993).
  8. R. R. Aliev and A. V. Panfilov, Chaos, Solitons & Fractals 7, 293 (1996).
  9. A. V. Panfilov, Chaos: An Interdisciplinary Journal of Nonlinear Science 8, 57 (1998).
  10. T. Shajahan, S. Sinha, and R. Pandit, Int. J. Mod. Phys. B 17, 5645 (2003).
  11. A. Panfilov, Phys. Rev. Lett. 88, 118101 (2002).
  12. K. H. ten Tusscher and A. V. Panfilov, Multiscale Modeling & Simulation 3, 265 (2005).
  13. A. Panfilov, S. C. Mu¨ller, V. S. Zykov, and J. P. Keener, Phys. Rev. E 61, 4644 (2000).
  14. Z. Qu, F. Xie, A. Garfinkel, and J. N. Weiss, Annals of Biomedical Engineering 28, 755 (2000).
  15. T. Shajahan, A. R. Nayak, and R. Pandit, PLoS One 4, e4738 (2009).
  16. K. Rajany, A. R. Nayak, R. Majumder, and R. Pandit, Physics Open 13, 100120 (2022).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025