Системно-динамическая имитационная модель социально-экономического развития Республики Южная Осетия
- Авторы: Гончарова К.С.1, Коломыцева А.О.2, Шеломенцев А.Г.2, Павлов М.В.2
-
Учреждения:
- ИЭ УрО РАН
- Уральский федеральный университет
- Выпуск: Том 60, № 1 (2024)
- Страницы: 72-84
- Раздел: Региональные проблемы
- URL: https://medjrf.com/0424-7388/article/view/653313
- DOI: https://doi.org/10.31857/S0424738824010065
- ID: 653313
Цитировать
Аннотация
В основе стратегии социально-экономического развития государства, а также опирающиеся на ее направления и методы реализации государственной политики лежит разработка долгосрочных прогнозов, охватывающих основные жизненно важные сферы. Однако до настоящего времени вопрос о наиболее приемлемом с точки зрения конечного результата (наступление предсказанных событий и/или достижения плановых значений социально-экономической динамики государства) методе прогнозирования остается дискуссионным. В настоящей работе для разработки прогноза социально-экономического развития частично признанной Республики Южная Осетия, учитывая существенную ограниченность ее статистических данных периодом 14 лет (с 2008 по 2022 г.), а также наличие структурных диспропорций, обосновывается использование метода системно-динамического имитационного моделирования, позволяющего преодолеть ограничения, связанные с применением эконометрических моделей. В результате авторами было рассчитано четыре прогнозных сценария развития Республики. Авторы приходят к выводу, что в стратегическом плане необходима разработка комплекса долгосрочных мероприятий, одновременно сочетающих, с одной стороны, сокращение бюджетных расходов по наиболее ёмким статьям; с другой, — выход части предпринимательской деятельности из «тени», а также ее активизацию в перспективных направлениях. Разработанная системно-динамическая имитационная модель социально-экономического развития Республики Южная Осетия позволяет в целом повысить качество рассчитываемых исследователями долгосрочных прогнозов, а также обеспечить высокий уровень обоснованности принимаемых органами государственной власти решений.
Полный текст

Об авторах
К. С. Гончарова
ИЭ УрО РАН
Автор, ответственный за переписку.
Email: ksenia.gon4arowa@gmail.com
Россия, Екатеринбург
А. О. Коломыцева
Уральский федеральный университет
Email: anniris21@rambler.ru
Россия, Екатеринбург
А. Г. Шеломенцев
Уральский федеральный университет
Email: a.shelom@yandex.ru
Россия, Екатеринбург
М. В. Павлов
Уральский федеральный университет
Email: pavlovmark24@gmail.com
Россия, Екатеринбург
Список литературы
- Аверин Г. В., Звягинцева А. В., Швецова А. А. (2018). О подходах к предсказательному моделированию сложных // Научные ведомости Белгородского государственного университета. Серия: Экономика. Информатика. Т. 45. № 1. С. 140–148. doi: 10.18413/2411-3808-2018-45-1-140-148 [Averin G. V., Zviagintseva А. V., Shvetsova A. A. (2018). On approaches to predictive modeling of complex system. Belgorod State University Scientific Bulletin. Series: Economics. Information Technologies, 45, 1, 140–148. doi: 10.18413/2411-3808-2018-45-1-140-148 (in Russian).]
- Аганбегян А. Г. (2021). О необходимости планирования в новой России // Вопросы политической экономии. № 2 (26). C. 27–44. doi: 10.5281/zenodo.5040286 Режим доступа: https://zenodo.org/record/5040286 [Aganbegyan A. G. (2021). On the need for planning in new Russia. Questions of Political Economy, 2 (26), 27–44. doi: 10.5281/zenodo.5040286 Available at: https://zenodo.org/record/5040286 (in Russian).]
- Балуков А. В., Яндыбаева Н. В. (2019). Прогнозирование показателей социально-экономического развития муниципального района // Актуальные проблемы современности: наука и общество. № 1 (22). С. 3–9. [Balukov A. V., Iandybaeva N. V. The forecast of the indicators of the municipality socio-economic development. Actual Issues of Modern Science and Society, 1 (22), 3–9 (in Russian).]
- Бахтизин А. Р. (2023). Вопросы прогнозирования в современных условиях // Экономическое возрождение России. № 2 (76). С. 53–62. doi: 10.37930/1990-9780-2023-2(76)-53-62 [Bakhtizin A. R. (2023). The challenges of forecasting under current conditions. The Economic Revival of Russia, 2 (76), 53–62. doi: 10.37930/1990-9780-2023-2(76)-53-62 (in Russian).]
- Ванчикова Е. Н., Архипова М. Ю. (2015). Социально-экономическое прогнозирование как функция регионального управления // Вестник Бурятского государственного университета. Экономика и менеджмент. № . 3. С. 42–48. [Vanchikova E. N., Arkhipova M. Y. (2015). Socio-economic forecasting function as a regional management. Buryat State University Bulletin. Economy and Management, 3, 42–48 (in Russian).]
- Гафарова Е. А. (2013). Имитационные модели комплексного регионального развития // Управление большими системами. № 45. С. 206–221. [Gafarovа E. A. (2013). Simulation models of integrated regional development. Large-Scale Systems Control, 45, 206–221 (in Russian).]
- Дынкин А. А., Миловидов В. Д. (2023). Наука дальновидности: как преуспеть в стратегическом прогнозировании и планировании // Проблемы прогнозирования. № 3 (198). С. 6–23. doi: 10.47711/0868-6351-198-6-23 [Dynkin A. A., Milovidov V. D. (2023). The science of foresight: How to succeed in strategic forecasting and planning. Studies on Russian Economic Development, 34, 3, 285–296. doi: 10.47711/0868-6351-198-6-23 (in Russian).]
- Ивантер В. В. (2020). К 85-летию со дня рождения. О прогнозировании российской экономики // Проблемы прогнозирования. № 6 (183). С. 12–17. doi: 10.47711/0868-6351-183-12-17 [Ivanter V. V. (2020). To the 85th anniversary of his birth. On forecasting the Russian economy. Studies on Russian Economic Development, 6 (183), 12–17. doi: 10.47711/0868-6351-183-12-17 (in Russian).]
- Ивантер В. В., Узяков М. Н., Ксенофонтов М. Ю., Панфилов В. С., Говтвань О. Д., Широв А. А. и др. (2005). Будущее России: инерционное развитие или инновационный прорыв (долгосрочный сценарный прогноз) // Проблемы прогнозирования. № 5. С. 17–66. [Ivanter V. V., Uzyakov M. N., Ksenofontov M. Y., Panfilov V. S., Govtvan O. D., Shirov A. A. et al. (2020). The Future of Russia: Inertial development or innovative breakthrough. Studies on Russian Economic Development, 5, 17–66 (in Russian).]
- Колюжнов Д. В., Ляхнова М. В. (2022). Малая DSGE-модель экономики России с неоднородным адаптивным обучением // Мир экономики и управления. Т. 22. № 3. С. 66–87. doi: 10.25205/2542-0429-2022-22-3-66-87 [Kolyuzhnov D. V., Lyahnova M. V. (2022). Small DSGE model of the Russian economy with heterogeneous adaptive learning. World of Economics and Management, 22, 3, 66–87. doi: 10.25205/2542-0429-2022-22-3-66-87 (in Russian).]
- Копырин А. С. (2008). Системно-динамическое моделирование как инструмент для прогнозирования и сценарного анализа на уровне муниципального образования (на примере города-курорта Сочи) // Региональная экономика: теория и практика. № 27. С. 57–65. [Kopyrin A. (2008). System-dynamic modeling as a tool for forecasting and scenario analysis at a municipal level (on the example of the resort city of Sochi). Regional Economics: Theory and Practice, 27, 57–65 (in Russian).]
- Крепцев Д., Селезнев С. (2016). DSGE-модели российской экономики с малым количеством уравнений. Центральный банк РФ. Серия докладов об экономических исследованиях. № 12. 53 с. [Krepcev D., Seleznev S. (2016). DSGE-models of the Russian economy with a small number of equations. The Central Bank of the Russian Federation. A series of reports on economic research, 12, 53 (in Russian).]
- Крупко А. Э., Фетисов Ю. М., Рогозина Р. Е. (2020). Проблемы прогнозирования социально-экономического развития центрально-черноземного района в условиях политической и социально-экономической нестабильности // Бизнес. Образование. Право. № 1 (50). С. 302–309. doi: 10.25683/VOLBI.2020.50.181 [Krupko A. E., Fetisov Y. M., Rogozina R. E. (2020). Problems of forecasting of socio-economic development of the central-black-earth district under the conditions of political and socio-economic instability. Business. Education. Law, 1 (50), 302–309. doi: 10.25683/VOLBI.2020.50.181 (in Russian).]
- Кугаенко А. А. (1991). Модели прогнозирования социально-экономических процессов (на основе методов системной динамики). Дис. … д-ра эконом. наук. М.: МПГУ. 341 с. [Kugaenko A. A. (1991). Forecasting models of socio-economic processes (based on system dynamics methods). The dissertation … Doctor of Economics. Moscow, Moscow State University of Education. 341 p. (in Russian).]
- Масленникова А. В. (2020). Комплексная оценка потенциала Москвы и Московской области для реализации стратегии устойчивого развития Московской агломерации // Вестник Российского нового университета. Серия: Человек и общество. № 3. С. 64–70. doi: 10.25586/RNU.V9276.20.03.064 [Maslennikova A. V. (2020). Comprehensive assessment of the potential of Moscow and the Moscow region for the implementation of the sustainable development strategy of the Moscow metropolitan area. Vestnik of the Russian New University. Series Man and Society, 3, 64–70. doi: 10.25586/RNU.V9276.20.03.064 (in Russian).]
- Пролубников А. В. (2014). Подходы к прогнозированию и оценке социально- экономического развития российских регионов // Теория и практика сервиса: экономика, социальная сфера, технологии. № 3 (21). С. 61– 66. [Prolubnikov A. V. (2014). Approaches to forecasting and assessment of socio-economic development of Russian regions. Theory and Practice of Service: Economics, Social Sphere, Technologies, 3 (21), 61–66 (in Russian).]
- Резчиков А. Ф., Цвиркун А. Д., Кушников В. А., Яндыбаева Н. В., Иващенко В. А. (2015). Методы прогнозной оценки социально-экономических показателей национальной безопасности // Проблемы управления. № 5. С. 37– 44. [Rezchikov A. F., Tsvirkun A. D., Kushnikov V. A., Yandybaeva N. V., Ivashchenko V. A. (2015). Methods of predictive assessment of socio-economic indicators of national security. Control Sciences, 5, 37–44 (in Russian).]
- Светуньков С. Г. (2021). Краткосрочное экономическое прогнозирование комплекснозначными авторегрессиями // Экономическая наука современной России. № 4 (95). С. 35–48. [Svetunkov S. G. (2021). Short-term economic forecasting by complex-valued autoregressions. Economics of Contemporary Russia, 4 (95), 35–48 (in Russian).]
- Сушко Е. Д. (2012). Мультиагентная модель региона: концепция, конструкция и реализация. М.: ЦЭМИ РАН. 54 с. [Sushko E. D. (2012). Multi-agent model of a region: Concept, design and implementation. Moscow: Central Economic Mathematical Institute, Russian Academy of Sciences. 54 p. (in Russian).]
- Широв А. А., Янтовский А. А. (2017). Межотраслевая макроэкономическая модель RIM — развитие инструментария в современных экономических условиях // Проблемы прогнозирования. № 3 (162). С. 3–18. [Shirov A. A., Yantovsky A. A. (2017). Intersectoral macroeconomic model RIM — development of tools in modern economic conditions. Studies on Russian Economic Development, 3 (162), 3–18 (in Russian).]
- Яндыбаева Н. В. (2019). Моделирование и прогнозирование показателей социально-экономического развития региона // Вопросы управления. № 2. С. 132–139. [Yandybaeva N. P. (2019). Modeling and forecasting indicators of socio-economic development of the region. Management Issues, 2 (38), 132–139 (in Russian).]
- Яндыбаева Н. В., Кондратов Д. В. (2020). Математические модели, алгоритмы и комплекс программ для анализа и прогнозирования показателей национальной безопасности // Прикладная информатика. Т. 15. № 1 (85). С. 19–36. doi: 10.24411/1993-8314-2020-10002 [Yandybaeva N., Kondratov D. (2020). Mathematical models, algorithms and complexes of programs for the analysis and forecasting of national security indicators. Journal of Applied Informatics, 15, 1, 19–36. doi: 10.24411/1993-8314-2020-10002 (in Russian).]
- Christoffel K., Coenen G., Warne A. (2010). Forecasting with DSGE models. European Central Bank Working Paper Series, 1185, 52.
- Dimand R. W. (2019). The Cowles commission and foundation for research in economics. Cowles Foundation Discussion, 2207, 22. doi: 10.1057/978-1-349-95121-5
- Eckstein O. (1983). The DRI model of the U.S. economy. N.Y.: McGraw-Hill Pub. 253 p.
- Edge R., Kiley M., Laforte P. (2010). A comparison of forecast performance of between Federal Reserve Staff Forecasts, simple reduced form models, and a DSGE model. Finance and Economics Discussion Series. Division of Research and Statistics and Monetary Affairs, Federal Reserve Board, Washington, DC.
- Heim J. J. (2017). An econometric model of the US economy structural. Analysis in 56 equations. Cham (Switzerland): Palgrave Macmillan Cham. 460 p. doi: 10.1007/978-3-319-50681-4
- Jo C., Kim D. H., Lee J. W. (2023). Forecasting unemployment and employment: A system dynamics approach. Technological Forecasting and Social Change, 194, 122715, 1–9. doi: 10.1016/j.techfore.2023.122715
- Klein L. R. (1950). Economic fluctuations in the United States, 1921–1941. Cowles Commission for Research in Economics, 11. N.Y.: John Wiley & Sons. 174 p.
- Klein L. R., Goldberger A. S. (1964). An econometric model of the United States 1929–1952. Contributions to economic analysis. Amsterdam: North-Holland Pub. Co. 165 p.
- Koopmans T. C. (1940). The degree of damping in business cycles. Econometrica, 8, 1, 79–89. doi: 10.2307/1906863
- Sbrana G., Silvestrini A. (2023). The RWDAR model: A novel state-space approach to forecasting. International Journal of Forecasting, 39, 2, 922–937. doi: 10.1016/j.ijforecast.2022.03.003
- Schweiger G., Nilsson H., Schoeggl J., Birk W., Posch A. (2020). Modeling and simulation of large-scale systems: A systematic comparison of modeling paradigms. Applied Mathematics and Computation, 365, 1–31. doi: 10.1016/j.amc.2019.124713
- Smets F., Wouters R. (2002). An estimated stochastic dynamic general equilibrium model of the Euro Area. The European Central Bank. Working paper series, 71, 69. doi: 10.2139/ssrn.358102
- Smets F., Wouters R. (2007). Shocks and frictions in us business cycles: A Bayesian DSGE approach. ECB Working Paper, 722, 55. doi: 10.2139/ssrn.958687
- Tinbergen J. (1939). Statistical testing of business cycle theories: Business cycles in the United States of America, 1919– 1932 (League of Nations, Geneva, 1939, II, 13–20). In: D. Hendry, M. Morgan. The foundations of econometric analysis. Cambridge: Cambridge University Press, 347–351. doi: 10.1017/CBO9781139170116.033
- Yuan H., Wang J. (2014). A system dynamics model for determining the waste disposal charging fee in construction. European Journal of Operational Research, 237, 3, 988–996. doi: 10.1016/j.ejor.2014.02.034
- Zhou M., Huang W., Mardani A. (2023). Examining the relationships between supply, demand, and environmental policies for science and technology innovation using a system simulation model. Journal of Innovation & Knowledge, 8, 3. doi: 10.1016/j.jik.2023.100395
Дополнительные файлы
