Influence of conditions for modification of oxidized carbon nanotubes on the catalytic activity and selectivity in the oxygen reduction reaction to hydrogen peroxide

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Catalysts of cathodic hydrogen peroxide synthesis were obtained from pre–oxidized with nitric acid multiwalled carbon nanotubes (MWCNTs), followed by hydrogen reduction in a temperature range of 300–500°C. Evaluation of physico–chemical properties of catalysts reveals the synthesis method used allowed for controlled changes composition of oxygen groups on surface without change of MWCNTs structure and morphology. Investigation of catalytic activity in cathodic process for production of hydrogen peroxide demonstrated the sample prepared by hydrogen reduction at 300°C with oxygen content of 5.2 at. % (based on XPS data) had the highest efficiency. The sample produced hydrogen peroxide with rate of 0.34 mol/(g·h) and Faradaic efficiency of 78%. Increase in reduction temperature more than 300°C resulted in decrease in rate of accumulation Н2О2 without severe change Faradaic efficiency.

Авторлар туралы

N. Maltseva

Novosibirsk State University; Boreskov Institute of Catalysis SB RAS

Хат алмасуға жауапты Автор.
Email: maltseva.n.v@catalysis.ru
Ресей, Novosibirsk; Novosibirsk

S. Moseenkov

Boreskov Institute of Catalysis SB RAS

Email: maltseva.n.v@catalysis.ru
Ресей, Novosibirsk

M. Lebedeva

Novosibirsk State University; Boreskov Institute of Catalysis SB RAS

Email: maltseva.n.v@catalysis.ru
Ресей, Novosibirsk; Novosibirsk

D. Kozlov

Novosibirsk State University; Boreskov Institute of Catalysis SB RAS

Email: maltseva.n.v@catalysis.ru
Ресей, Novosibirsk; Novosibirsk

Әдебиет тізімі

  1. Hage, R. and Lienke, A., Applications of transition‐metal catalysts to textile and wood‐pulp bleaching, Angewandte Chem. Intern. Ed., 2006, vol. 45, p. 206.
  2. Raj, C.C. and Quen, H.L., Advanced oxidation processes for wastewater treatment: Optimization of UV/H2O2 process through a statistical technique, Chem. Engineering Sci., 2005, vol. 60, p. 5305.
  3. Kosaka, K., Yamada, H., Shishida, K., Echigo, S., Minear, R.A., Tsuno, H., and Matsui, S., Evaluation of the treatment performance of a multistage ozone/hydrogen peroxide process by decomposition by-products, Water Res., 2001, vol. 35, p. 3587.
  4. Alvarez–Gallegos, A. and Pletcher, D., The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions, Electrochim. Acta, 1998, vol. 44, p. 853.
  5. De Leon, C.P. and Pletcher, D., Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell, J. Appl. Electrochem., 1995, vol. 25, p. 307.
  6. Perry, S.C., Pangotra, D., Vieira, L., Csepei, L.–I., Sieber, V., Wang, L., Ponce de León, C., and Walsh, F.C., Electrochemical synthesis of hydrogen peroxide from water and oxygen, Nature Rev. Chem., 2019, vol. 3, p. 442.
  7. Tanev, P.T., Chibwe, M., and Pinnavaia, T.J., Titanium–containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature, 1994, vol. 368, p. 321.
  8. Clerici, M.G. and Ingallina, P., Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite, J. Catalysis, 1993, vol. 140, p. 71.
  9. Noyori, R., Aoki, M., and Sato, K., Green oxidation with aqueous hydrogen peroxide, Chem. Commun., 2003, vol. p. 1977.
  10. Lane, B.S. and Burgess, K., Metal-catalyzed epoxidations of alkenes with hydrogen peroxide, Chem. rev., 2003, vol. 103, p. 2457.
  11. Fierro, J., Campos–martin, J.M., and Blanco–brieva, G., Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process angewandte, Angewandte Chem.–Intern. Ed., 2006, vol. 45, p. 6962.
  12. Fukuzumi, S., Lee, Y.M., and Nam, W., Solar‐Driven Production of Hydrogen Peroxide from Water and Dioxygen, Chem.–A Europ. Journal, 2018, vol. 24, p. 5016.
  13. Davies, R. and Hickling, A., 686. Glow–discharge electrolysis. Part I. The anodic formation of hydrogen peroxide in inert electrolytes, J. Chem. Soc. (Resumed), 1952, vol. p. 3595.
  14. Viswanathan, V., Hansen, H.A., and Nørskov, J.K., Selective electrochemical generation of hydrogen peroxide from water oxidation, J. Phys. Chem. Letters, 2015, vol. 6, p. 4224.
  15. Chai, G.-L., Hou, Z., Ikeda, T., and Terakura, K., Two–electron oxygen reduction on carbon materials catalysts: mechanisms and active sites, J. Phys. Chem. C, 2017, vol. 121, p. 14524.
  16. Park, J., Nabae, Y., Hayakawa, T., and Kakimoto, M.–a., Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon, ACS Catalysis, 2014, vol. 4, p. 3749.
  17. Lei, Y., Liu, H., Jiang, C., Shen, Z., and Wang, W., A trickle bed electrochemical reactor for generation of hydrogen peroxide and degradation of an azo dye in water, J. Advanced Oxidation Technol., 2015, vol. 18, p. 47.
  18. Lu, Z., Chen, G., Siahrostami, S., Chen, Z., Liu, K., Xie, J., Liao, L., Wu, T., Lin, D., and Liu, Y., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials, Nature Catalysis, 2018, vol. 1, p. 156.
  19. Fellinger, T.-P., Hasché, F., Strasser, P., and Antonietti, M., Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide, J. Amer. Chem. Soc., 2012, vol. 134, p. 4072.
  20. Perazzolo, V., Durante, C., Pilot, R., Paduano, A., Zheng, J., Rizzi, G.A., Martucci, A., Granozzi, G., and Gennaro, A., Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide, Carbon, 2015, vol. 95, p. 949.
  21. Sidik, R.A., Anderson, A.B., Subramanian, N.P., Kumaraguru, S.P., and Popov, B.N., O2 reduction on graphite and nitrogen-doped graphite: experiment and theory, J. Phys. Chem. B, 2006, vol. 110, p. 1787.
  22. Peng, Y., Bian, Z., Zhang, W., and Wang, H., Identifying the key N species for electrocatalytic oxygen reduction reaction on N-doped graphene, Nano Research, 2023, vol. p. 1.
  23. Lee, J., Lim, J.S., Yim, G., Jang, H., Joo, S.H., and Sa, Y.J., Unveiling the cationic promotion effect of H2O2 electrosynthesis activity of O-doped carbons, ACS appl. mater. & interfaces, 2021, vol. 13, p. 59904.
  24. Stamatin, S.N., Hussainova, I., Ivanov, R., and Colavita, P.E., Quantifying graphitic edge exposure in graphene-based materials and its role in oxygen reduction reactions, ACS Catalysis, 2016, vol. 6, p. 5215.
  25. Jiang, Y., Ni, P., Chen, C., Lu, Y., Yang, P., Kong, B., Fisher, A., and Wang, X., Selective electrochemical H2O2 production through two‐electron oxygen electrochemistry, Advanced Energy Mater., 2018, vol. 8, p. 1801909.
  26. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C., Chemical oxidation of multiwalled carbon nanotubes, Carbon, 2008, vol. 46, p. 833.
  27. Rosca, I.D., Watari, F., Uo, M., and Akasaka, T., Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 2005, vol. 43, p. 3124.
  28. Li, M., Boggs, M., Beebe, T.P., and Huang, C., Oxidation of single–walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound, Carbon, 2008, vol. 46, p. 466.
  29. Wepasnick, K.A., Smith, B.A., Schrote, K.E., Wilson, H.K., Diegelmann, S.R., and Fairbrother, D.H., Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments, Carbon, 2011, vol. 49, p. 24.
  30. Panzer, R. and Elving, P.J., Nature of the surface compounds and reactions observed on graphite electrodes, Electrochim. Acta, 1975, vol. 20, p. 635.
  31. Sun, F., Yang, C., Qu, Z., Zhou, W., Ding, Y., Gao, J., Zhao, G., Xing, D., and Lu, Y., Inexpensive activated coke electrocatalyst for high-efficiency hydrogen peroxide production: Coupling effects of amorphous carbon cluster and oxygen dopant, Appl. Catal. B: Environmental, 2021, vol. 286, p. 119860.
  32. Han, G.-F., Li, F., Zou, W., Karamad, M., Jeon, J.-P., Kim, S.-W., Kim, S.-J., Bu, Y., Fu, Z., and Lu, Y., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2, Nature commun., 2020, vol. 11, p. 2209.
  33. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez–Reinoso, F., Rouquerol, J., and Sing, K.S., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Appl. Chem., 2015, vol. 87, p. 1051.
  34. Al-Jishi, R. and Dresselhaus, G., Lattice–dynamical model for graphite, Phys. Rev. B, 1982, vol. 26, p. 4514.
  35. Lee, S., Peng, J.-W., and Liu, C.-H., Probing plasma-induced defect formation and oxidation in carbon nanotubes by Raman dispersion spectroscopy, Carbon, 2009, vol. 47, p. 3488.
  36. Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A., Raman spectroscopy of carbon nanotubes, Phys. reports, 2005, vol. 409, p. 47.
  37. Kinoshita, K., Electrochemical oxygen technology, John Wiley & Sons, 1992. С. 4.
  38. Lim, J.S., Kim, J.H., Woo, J., San Baek, D., Ihm, K., Shin, T.J., Sa, Y.J., and Joo, S.H., Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification, Chem., 2021, vol. 7, p. 3114.
  39. Katsounaros, I., Cherevko, S., Zeradjanin, A.R., and Mayrhofer, K.J., Oxygen electrochemistry as a cornerstone for sustainable energy conversion, Angewandte Chem. Intern. Ed., 2014, vol. 53, p. 102.
  40. Liu, W., Li, C., Ding, G., Duan, G., Jiang, Y., and Lu, Y., Highly efficient hydrogen peroxide electrosynthesis on oxidized carbon nanotubes by thermally activated–persulfate, J. Materiomics, 2022, vol. 8, p. 136.
  41. Chen, S., Chen, Z., Siahrostami, S., Higgins, D., Nordlund, D., Sokaras, D., Kim, T.R., Liu, Y., Yan, X., and Nilsson, E., Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide, J. Amer. Chem. Soc., 2018, vol. 140, p. 7851.
  42. Раздьяконова, Г.И., Кохановская, О.А., Лихолобов, В.А. Саморазложение пероксида водорода на поверхности дисперсного углерода. Радиоэлектроника. Наносистемы. Информ. технологии. 2015. Т. 7. С. 180. [Razdyakonova, G.I., Kokhanovskaya, O.A., and Likholobov, V.A., Self–decomposition of hydrogen peroxide on the surface of dispersed carbon, Radioelectronics. Nanosystems. Information Technologies (in Russian), 2015, vol. 7, p. 180.]
  43. Морозов, А.Р., Родионов, А.И., Каменчук, И.Н. Кинетика разложения пероксида водорода в воде. Успехи в химии и химической технологии. 2014. Т. 28. С. 46. [Morozov, A.R., Rodionov, A.I., and Kamenchuk, I.N., Kinetics of hydrogen peroxide decomposition in water, Uspekhi khimii I khimicheskoy tekhnologii, 2014, vol. 28, p. 46.]
  44. Ribeiro, R.S., Silva, A.M., Figueiredo, J.L., Faria, J.L., and Gomes, H.T., The influence of structure and surface chemistry of carbon materials on the decomposition of hydrogen peroxide, Carbon, 2013, vol. 62, p. 97.
  45. Rey, A., Zazo, J., Casas, J., Bahamonde, A., and Rodriguez, J., Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide, Appl. Catal. A: General, 2011, vol. 402, p. 146.
  46. Domínguez, C., Quintanilla, A., Ocón, P., Casas, J., and Rodriguez, J., The use of cyclic voltammetry to assess the activity of carbon materials for hydrogen peroxide decomposition, Carbon, 2013, vol. 60, p. 76.
  47. Khalil, L.B., Girgis, B.S., and Tawfik, T.A.M., Decomposition of H2O2 on activated carbon obtained from olive stones, J. Chem. Technol. & Biotechnol.: Intern. Res. in Process, Environmental & Clean Technol., 2001, vol. 76, p. 1132.
  48. Oliveira, L.C., Silva, C.N., Yoshida, M.I., and Lago, R.M., The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition, Carbon, 2004, vol. 42, p. 2279.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024