Nanocomposite of Graphene-Phosphorene Structures with Cobalt Phosphide as Effective Electrocatalyst for Hydrogen Evolution Reaction in Acidic Medium

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Materials containing cobalt phosphide nanoparticles are among the most promising electrocatalysts for the hydrogen evolution reaction in terms of the ratio of activity, cost and durability. This work presents a simple and effective approach for obtaining a nanocomposite of graphene-phosphorene structures decorated with CoP nanoparticles 2–5 nm in size. The nanocomposite was obtained by electrochemical exfoliation of black phosphorus followed by solvothermal synthesis carried out in the presence of few-layer graphene structures doped with nitrogen atoms in a solution containing Co2+ ions. It has been established that the obtained electrocatalyst demonstrates high activity and stability towards hydrogen evolution reaction in an acidic medium. In order to achieve a current density of 10 mA cm–2, an overpotential of ~220 mV is required, while the Tafel slope is ~63 mV dec–1. It has been suggested that this result is due to both the synergistic effect of the interaction between graphene and phosphorene structures and the electrocatalytic activity of nanosized CoP particles present at the edges of phosphorene structures.

全文:

受限制的访问

作者简介

V. Kochergin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kochergin@icp.ac.ru
俄罗斯联邦, Chernogolovka

R. Manzhos

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: kochergin@icp.ac.ru
俄罗斯联邦, Chernogolovka

E. Kabachkov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences; Institute of Solid State Physics of the Russian Academy of Sciences

Email: kochergin@icp.ac.ru
俄罗斯联邦, Chernogolovka; Chernogolovka

I. Khodos

Institute for Problems of Microelectronics and High-Purity Materials Technology of the Russian Academy of Sciences

Email: kochergin@icp.ac.ru
俄罗斯联邦, Chernogolovka

A. Krivenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: kochergin@icp.ac.ru
俄罗斯联邦, Chernogolovka

参考

  1. Huangfu, Z., Hu, H., Xie, N., Zhu, Y.-Q., Chen, H., and Wang, Y., The Heterogeneous Influence of Economic Growth on Environmental Pollution: Evidence from Municipal Data of China, Pet. Sci., 2020, vol. 17, p. 1180. https://doi.org/10.1007/s12182-020-00459-5
  2. Tian, L., Li, Z., Wang, P., Zhai, X., Wang, X., and Li, T., Carbon Quantum Dots for Advanced Electrocatalysis, J. Energy Chem., 2021, vol. 55, p. 279. https://doi.org/10.1016/j.jechem.2020.06.057
  3. Do, M.N., Berezina, N.M., Bazanov, M.I., Gyseinov, S.S., Berezin, M.M., and Koifman, O.I., Electrochemical Behavior of a Number of Bispyridyl-Substituted Porphyrins and Their Electrocatalytic Activity in Molecular Oxygen Reduction Reaction, J. Porphyrins Phthalocyanines, 2016, vol. 20, p. 615. https://doi.org/10.1142/S1088424616500437
  4. Sazali, N., Emerging Technologies by Hydrogen: A Review, Int. J. Hydrogen Energy, 2020, vol. 45, p. 18753. https://doi.org/10.1016/j.ijhydene.2020.05.021
  5. Zou, X. and Zhang, Y., Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting, Chem. Soc. Rev., 2015, vol. 44, p. 5148. https://doi.org/10.1039/C4CS00448E
  6. Popczun, E.J., McKone, J.R., Read, C.G., Biacchi, A.J., Wiltrout, A.M., Lewis, N.S., and Schaak, R.E., Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction, J. Am. Chem. Soc., 2013, vol. 135, p. 9267. https://doi.org/10.1021/ja403440e
  7. Li, Y., Sun, Y., Qin, Y., Zhang, W., Wang, L., Luo, M., Yang, H., and Guo, S., Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostructured Materials, Adv. Energy Mater., 2020, vol. 10, p. 1903120. https://doi.org/10.1002/aenm.201903120
  8. Ruqia, B. and Choi, S., Catalytic Surface Specificity on Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts, ChemSusChem, 2018, vol. 11, p. 2643. https://doi.org/10.1002/cssc.201800781
  9. Liao, F., Jiang, B., Shen, W., Chen, Y., Li, Y., Shen, Y., Yin, K., and Shao, M., Ir-Au Bimetallic Nanoparticle Modified Silicon Nanowires with Ultralow Content of Ir for Hydrogen Evolution Reaction, ChemCatChem, 2019, vol. 11, p. 2126. https://doi.org/10.1002/cctc.201900241
  10. Ma, F., Xu, C., Lyu, F., Song, B., Sun, S., Li, Y.Y., Lu, J., and Zhen, L., Construction of FeP Hollow Nanoparticles Densely Encapsulated in Carbon Nanosheet Frameworks for Efficient and Durable Electrocatalytic Hydrogen Production, Adv. Sci., 2019, vol. 6, p. 1801490. https://doi.org/10.1002/advs.201801490
  11. Kakati, N., Maiti, J., Lee, S.H., Jee, S.H., Viswanathan, B., and Yoon, Y.S., Anode Catalysts for Direct Methanol Fuel Cells in Acidic Media: Do We Have Any Alternative for Pt or Pt–Ru? Chem. Rev., 2014, vol. 114, p. 12397. https://doi.org/10.1021/cr400389f
  12. Antolini, E., Palladium in Fuel Cell Catalysis, Energy Environ. Sci., 2009, vol. 2, p. 915. https://doi.org/10.1039/b820837a
  13. Faber, M.S. and Jin, S., Earth-Abundant Inorganic Electrocatalysts and Their Nanostructures for Energy Conversion Applications, Energy Environ. Sci., 2014, vol. 7, p. 3519. https://doi.org/10.1039/C4EE01760A
  14. Zeng, M. and Li, Y., Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction, J. Mater. Chem. A, 2015, vol. 3, p. 14942. https://doi.org/10.1039/C5TA02974K
  15. Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A.M., and Sun, X., Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution, Angew. Chem. Int. Ed., 2014, vol. 53, p. 6710. https://doi.org/10.1002/anie.201404161
  16. Yu, S.H. and Chua, D.H.C., Toward High-Performance and Low-Cost Hydrogen Evolution Reaction Electrocatalysts: Nanostructuring Cobalt Phosphide (CoP) Particles on Carbon Fiber Paper, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 14777. https://doi.org/10.1021/acsami.8b02755
  17. Yan, L., Cao, L., Dai, P., Gu, X., Liu, D., Li, L., Wang, Y., and Zhao, X., Metal-Organic Frameworks Derived Nanotube of Nickel-Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting, Adv. Funct. Mater., 2017, vol. 27, p. 1703455. https://doi.org/10.1002/adfm.201703455
  18. Yu, D., Ilango, P.R., Han, S., Ye, M., Hu, Y., Li, L., and Peng, S., Metal-Organic Framework Derived Co@NC/CNT Hybrid as a Multifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reaction and Oxygen Reduction Reaction, Int. J. Hydrogen Energy, 2019, vol. 44, p. 32054. https://doi.org/10.1016/j.ijhydene.2019.10.149
  19. Lu, M., Li, L., Chen, D., Li, J., Klyui, N.I., and Han, W., MOF-Derived Nitrogen-Doped CoO@CoP Arrays as Bifunctional Electrocatalysts for Efficient Overall Water Splitting, Electrochim. Acta, 2020, vol. 330, p. 135210. https://doi.org/10.1016/j.electacta.2019.135210
  20. Sun, T., Dong, J., Huang, Y., Ran, W., Chen, J., and Xu, L., Highly Active and Stable Electrocatalyst of Ni2P Nanoparticles Supported on 3D Ordered Macro-/Mesoporous Co–N-Doped Carbon for Acidic Hydrogen Evolution Reaction, J. Mater. Chem. A, 2018, vol. 6, p. 12751. https://doi.org/10.1039/C8TA03672A
  21. Yang, S., Zhang, K., Ricciardulli, A.G., Zhang, P., Liao, Z., Lohe, M.R., Zschech, E., Blom, P.W.M., Pisula, W., Müllen, K., and Feng, X., A Rational Delamination Strategy towards Defect-Free, High- Mobility, Few-Layered Black Phosphorus Flakes, Angew. Chem., 2018, vol. 130, p. 4767. https://doi.org/10.1002/ange.201801265
  22. Cheng, J., Gao, L., Li, T., Mei, S., Wang, C., Wen, B., Huang, W., Li, C., Zheng, G., Wang, H., and Zhang, H., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science, Nano-Micro Lett., 2020, vol. 12, p. 1. https://doi.org/10.1007/s40820-020-00510-5
  23. Baboukani, A.R., Khakpour, I., Drozd, V., and Wang, C., Liquid-Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices, Small Struct., 2021, vol. 2, p. 2000148. https://doi.org/10.1002/sstr.202000148
  24. Liu, H., Hu, K., Yan, D., Chen, R., Zou, Y., Liu, H., and Wang, S., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications, Adv. Mater., 2018, vol. 30, p. 1800295. https://doi.org/10.1002/adma.201800295
  25. Mei, J., Liao, T., and Sun, Z., Opportunities and Challenges of Black Phosphorus for Electrocatalysis and Rechargeable Batteries, Adv. Sustain. Syst., 2022, vol. 6, p. 2200301. https://doi.org/10.1002/adsu.202200301
  26. Gao, W., Zhou, Y., Wu, X., Shen, Q., Ye, J., and Zou, Z., State-of-the-Art Progress in Diverse Black Phosphorus-Based Structures: Basic Properties, Synthesis, Stability, Photo- and Electrocatalysis-Driven Energy Conversion, Adv. Funct. Mater., 2021, vol. 31, p. 2005197. https://doi.org/10.1002/adfm.202005197
  27. Konev, D.V., Kotkin, A.S., Kochergin, V.K., Manzhos, R.A., and Krivenko, A. G., Effect of graphene surface functionalization on the oxygen reduction reaction in alkaline media, Mendeleev Commun., 2020, vol. 30, p. 472. https://doi.org/10.1016/j.mencom.2020.07.021
  28. Yuan, Z., Li, J., Yang, M., Fang, Z., Jian, J., Yu, D., Chen, X., and Dai, L., Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer, J. Am. Chem. Soc., 2019, vol. 141, p. 4972. https://doi.org/10.1021/jacs.9b00154
  29. Kochergin, V.K., Komarova, N.S., Kotkin, A.S., Manzhos, R.A., Vasiliev, V.P., and Krivenko, A.G., Plasma Electrochemical Synthesis of Graphene-Phosphorene Composite and Its Catalytic Activity towards Hydrogen Evolution Reaction, C, 2022, vol. 8, p. 79. https://doi.org/10.3390/c8040079
  30. Krivenko, A.G., Manzhos, R.A., Kotkin, A.S., Kochergin, V.K., Piven, N.P., and Manzhos, A.P., Production of Few-Layer Graphene Structures in Different Modes of Electrochemical Exfoliation of Graphite by Voltage Pulses, Instrum. Sci. Technol., 2019, vol. 47, p. 535. https://doi.org/10.1080/10739149.2019.1607750
  31. Krivenko, A.G., Manzhos, R.A., Kochergin, V.K., Malkov, G.V., Tarasov, A.E., and Piven, N.P., Plasma electrochemical synthesis of few-layer graphene structures for modification of epoxy binder, High Energ. Chem., 2019, vol. 53, p. 254. https://doi.org/ 10.1134/S0018143919030111
  32. Kochergin, V.K., Manzhos, R.A., Khodos, I.I., and Krivenko, A.G., One-Step Synthesis of Nitrogen-Doped Few-Layer Graphene Structures Decorated with Mn1.5Co1.5O4 Nanoparticles for Highly Efficient Electrocatalysis of Oxygen Reduction Reaction, Mendeleev Commun., 2022, vol. 32, p. 492. https://doi.org/10.1016/j.mencom.2022.07.020
  33. Wang, J., Liu, D., Huang, H., Yang, N., Yu, B., Wen, M., Wang, X., Chu, P.K., and Yu, X.-F., In-Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis, Angew. Chem., 2018, vol. 130, p. 2630. https://doi.org/10.1002/ange.201710859
  34. Ha, D.-H., Moreau, L.M., Bealing, C.R., Zhang, H., Hennig, R.G., and Robinson, R.D., The Structural Evolution and Diffusion during the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles, J. Mater. Chem., 2011, vol. 21, p. 11498. https://doi.org/10.1039/c1jm10337g
  35. Liu, T., Yan, X., Xi, P., Chen, J., Qin, D., Shan, D., Devaramani, S., and Lu, X., Nickel–Cobalt Phosphide Nanowires Supported on Ni Foam as a Highly Efficient Catalyst for Electrochemical Hydrogen Evolution Reaction, Int. J. Hydrogen Energy, 2017, vol. 42, p. 14124. https://doi.org/10.1016/j.ijhydene.2017.04.116
  36. Kotkin, A.S., Kochergin, V.K., Kabachkov, E.N., Shulga, Y.M., Lobach, A.S., Manzhos, R.A., and Krivenko, A.G., One-Step Plasma Electrochemical Synthesis and Oxygen Electrocatalysis of Nanocomposite of Few-Layer Graphene Structures with Cobalt Oxides, Mater. Today Energy, 2020, vol. 17, p. 100459. https://doi.org/10.1016/j.mtener.2020.100459
  37. Pan, Y., Liu, Y., Zhao, J., Yang, K., Liang, J., Liu, D., Hu, W., Liu, D., Liu, Y., and Liu, C., Monodispersed Nickel Phosphide Nanocrystals with Different Phases: Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution, J. Mater. Chem. A, 2015, vol. 3, p. 1656. https://doi.org/10.1039/C4TA04867A
  38. Huang, Z., Chen, Z., Chen, Z., Lv, C., Meng, H., and Zhang, C., Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis, ACS Nano, 2014, vol. 8, p. 8121. https://doi.org/10.1021/nn5022204
  39. Grosvenor, A.P., Wik, S.D., Cavell, R.G., and Mar, A., Examination of the Bonding in Binary Transition-Metal Monophosphides MP (M = Cr, Mn, Fe, Co) by X-Ray Photoelectron Spectroscopy, Inorg. Chem., 2005, vol. 44, p. 8988. https://doi.org/10.1021/ic051004d
  40. Li, X., Ma, J., Luo, J., Cheng, S., Gong, H., Liu, J., Xu, C., Zhao, Z., Sun, Y., Song, W., Li, K., and Li, Z., Porous N, P Co-Doped Carbon-Coated Ultrafine Co2P Nanoparticles Derived from DNA: An Electrocatalyst for Highly Efficient Hydrogen Evolution Reaction, Electrochim. Acta, 2021, vol. 393, p. 139051. https://doi.org/10.1016/j.electacta.2021.139051
  41. Briggs, D. and Seah, M.P., Practical Surface Analysis: By Auger and X-Ray Photoelectron Spectroscopy, 2nd ed., JohnWiley & Sons, Ltd.: Chichester, UK, 1990. 674 p.
  42. Lv, X., Ren, J., Wang, Y., Liu, Y., and Yuan, Z.Y., Well-defined phase-controlled cobalt phosphide nanoparticles encapsulated in nitrogen-doped graphitized carbon shell with enhanced electrocatalytic activity for hydrogen evolution reaction at all-pH, ACS Sustain. Chem. Eng., 2019, vol. 7, p. 8993. https://doi.org/10.1021/acssuschemeng.9b01263
  43. Zhang, X.Y., Guo, B.Y., Chen, Q.W., Dong, B., Zhang, J.Q., Qin, J.F., Xie, J.Y., Yang, M., Wang, L., Chai, Y.M., and Liu, C.G., Ultrafine and highly-dispersed bimetal Ni2P/Co2P encapsulated by hollow N-doped carbon nanospheres for efficient hydrogen evolution, Int. J. Hydrogen Energy, 2019, vol. 44, p. 14908. https://doi.org/10.1016/j.ijhydene.2019.04.108
  44. Chen, T., Ye, B., Dai, H., Qin, S., Zhang, Y., and Yang, Q., Ni-doped CoP/Co2P nanospheres as highly efficient and stable hydrogen evolution catalysts in acidic and alkaline mediums, J. Solid State Chem., 2021, vol. 301, p. 122299. https://doi.org/10.1016/j.jssc.2021.122299
  45. Yang, S., Chen, L., Wei, W., Lv, X., and Xie, J., CoP nanoparticles encapsulated in three-dimensional N-doped porous carbon for efficient hydrogen evolution reaction in a broad pH range, Appl. Surf. Sci., 2019, vol. 476, p. 749. https://doi.org/10.1016/j.apsusc.2019.01.131
  46. Liao, L., Zhu, J., Bian, X., Zhu, L., Scanlon, M.D., Girault, H. H., and Liu, B., MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution, Adv. Funct. Mater., 2013, vol. 23, p. 5326. https://doi.org/10.1002/adfm.201300318

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. X-ray diffraction pattern of CoP/ERCF/N-MGS nanocomposite and literature data for CoP, CHF and graphite, according to PDFs No. 01-089-2598, No. 01-074-1878 and No. 00-056-0159, respectively

下载 (120KB)
3. Fig. 2. SEM (a) and PEM (b, c) images of CoP/ERCF/N-MGS nanocomposite

下载 (557KB)
4. Fig. 3. Co 2p (a) and P 2p (b) high-resolution XRD spectra of CoP/ERCF/N-MGS nanocomposite

下载 (213KB)
5. Fig. 4. Volt-ampere curves for CoP/ERCHF/N-MHS (1), CoP/ERCHF (2), ERCHF (3) measured in saturated Ar solution of 0.5 M H2SO4 at ν = 10 mV/s (a); corresponding Tafel dependences for CoP/ERCHF/N-MHS (1), CoP/ERCHF (2), ERCHF (3) (b)

下载 (166KB)
6. Fig. 5. Volt-ampere curves for CoP/ERCF/N-MGS nanocomposite recorded before (1) and after 500 cycles (2) of potential scanning

下载 (73KB)

版权所有 © Russian Academy of Sciences, 2024