Electrocatalytic Properties of Water-Soluble Nickel(II) and Copper(II) Phthalocyaninates in the Oxidation Reaction of Hydroxide Ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, the electrochemical and electrocatalytic behavior of gold electrodes modified with nickel(II) (NiPc) and copper(II) (CuPc) tetra-4-sulfophthalocyaninates in an aqueous alkaline solution was studied using cyclic voltammetry. A comparative assessment of the electrocatalytic activity of the studied metal phthalocyaninates in the oxidation reaction of hydroxide ions with the formation of molecular oxygen is given, and a comparison is made with literature data.

Full Text

Restricted Access

About the authors

M. A. Kovanova

Ivanovo State University of Chemistry and Technology

Author for correspondence.
Email: mariia.a.kovanova@gmail.com
Russian Federation, Ivanovo

P. D. Derbeneva

Ivanovo State University of Chemistry and Technology

Email: mariia.a.kovanova@gmail.com
Russian Federation, Ivanovo

A. S. Postnov

Ivanovo State University of Chemistry and Technology

Email: mariia.a.kovanova@gmail.com
Russian Federation, Ivanovo

T. V. Tikhomirova

Ivanovo State University of Chemistry and Technology

Email: mariia.a.kovanova@gmail.com
Russian Federation, Ivanovo

A. S. Vashurin

Ivanovo State University of Chemistry and Technology

Email: mariia.a.kovanova@gmail.com
Russian Federation, Ivanovo

O. I. Koifman

Ivanovo State University of Chemistry and Technology

Email: mariia.a.kovanova@gmail.com
Russian Federation, Ivanovo

References

  1. Будников, Г.К., Лабуда, Я. Химически модифицированные электроды как амперометрические сенсоры в электроанализе. Успехи химии. 1992. Т. 61. № 8. С. 1491. [Budnikov, G.K. and Labuda, J., Chemically modified electrodes as amperometric sensors in electroanalysis, Russ. Chem. Rev., 1992, vol. 61, no. 8, p. 816.] https://doi.org/10.1070/RC1992v061n08ABEH001000
  2. Choi, J., Wagner, P., Gambhir, S., Jalili, R., MacFarlane, D.R., Wallace, G.G., and Officer, D.L., Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO, ACS Energy Letters, 2019, vol. 4, no. 3, p. 666. https://doi.org/10.1021/acsenergylett.8b02355
  3. Demir, E., Silah, H., and Uslu, B., Phthalocyanine modified electrodes in electrochemical analysis, Critical Rev. in Analyt. Chem., 2022, vol. 52, no. 2, p. 425. https://doi.org/ 10.1080/10408347.2020.1806702
  4. Koyun, O., Gorduk, S., Gencten, M., and Sahin, Y., A novel copper (II) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A, New J. Chemistry, 2019, vol. 43, no. 1, p. 85. https://doi.org/10.1039/C8NJ03721C
  5. Akyüz, D. and Koca, A., An electrochemical sensor for the detection of pesticides based on the hybrid of manganese phthalocyanine and polyaniline, Sensors and Actuators B: Chemical, 2019, vol. 283, p. 848. https://doi.org/ 10.1016/j.snb.2018.11.155
  6. Bounegru, A. V. and Apetrei, C., Development of a novel electrochemical biosensor based on carbon nanofibers–cobalt phthalocyanine–laccase for the detection of p-coumaric acid in phytoproducts, Int. J. Molecular Sci., 2021, vol. 22, no. 17, p. 9302.
  7. Dorovskikh, S.I., Klyamer, D.D., Fedorenko, A.D., Morozova, N.B., and Basova, T.V., Electrochemical Sensor Based on Iron (II) Phthalocyanine and Gold Nanoparticles for Nitrite Detection in Meat Products, Sensors, 2022, vol. 22, no. 15, p. 5780. https://doi.org/10.3390/s22155780
  8. Kondratenko, N.V., Nemykin, V.N., Lukyanets, E.A., Kostromina, N.A., Volkovan, S.V., and Yagupolskii, L.M., The synthesis and properties of some polyfluoroalkoxy substituted phthalocyanines, J. Porphyrins Phthalocyanines, 1997, vol. 1, no. 4, p. 341. https://doi.org/10.1002/(SICI)1099-1409(199710)1:4 <341::AID-JPP37>3.0.CO;2-K
  9. Furuyama, T., Satoh, K., Kushiya, T., and Kobayashi, N., Design, Synthesis, and Properties of Phthalocyanine Complexes with Main-Group Elements Showing Main Absorption and Fluorescence beyond 1000 nm, J. Am. Chem. Soc., 2014, vol. 136, no. 2, p. 765. https://doi.org/10.1021/ja411016f
  10. Койфман, О.И., Агеева, Т.А. Общие подходы к синтезу тетрапиррольных макрогетероциклических соединений – перспективных материалов для фотовольтаических устройств. Высокомолекулярные соединения. Серия С. 2014. Т. 56. № 1. С. 89. [Koifman, O.I. and Ageeva, T.A., Common approaches to the synthesis of tetrapyrrole macroheterocyclic compounds: promising materials for photovoltaic devices, Polymer Science. Series C, 2014, vol. 56, no. 1, p. 84.] https://doi.org/10.1134/S1811238214010056
  11. Вашурин, А.С., Кузьмин, И.А., Литова, Н.А., Петров, О.А., Пуховская, С.Г., Голубчиков, О.А. Каталитические свойства кобальтовых комплексов производных тетрапиразинопорфиразина и фталоцианина. Журн. физ. химии. 2014. Т. 88. № 12. С. 1904. [Vashurin, A.S., Kuzmin, I.A., Litova, N.A., Petrov, O.A., Pukhovskaya, S.G., and Golubchikov, O.A., Catalytic properties of cobalt complexes with tetrapyrazino porphyrazine and phthalocyanine derivatives, Russ. J. Phys. Chem. A, 2014, vol. 88, no. 12, p. 2064.] https://doi.org/10.1134/S0036024414120395
  12. Vashurin, A., Maizlish, V., Pukhovskaya, S., Voronina, A., Kuzmin, I., Futerman, N., Golubchikov, O., and Koifman, O., Novel aqueous soluble cobalt (II) phthalocyanines of tetracarboxyl-substituted: Synthesis and catalytic activity on oxidation of sodium diethyldithiocarbamate, J. Porphyrins Phthalocyanines, 2015, vol. 19, no. 4, p. 573. https://doi.org/10.1142/S1088424614501028
  13. Петров, А.В., Базанов, М.И., Юрина, Е.С. Электрохимические и электрокаталитические свойства металлополимерных и макрогетероциклических комплексов с кобальтом. Электрохим. энергетика. 2010. Т. 10. № 3. С. 141. [Petrov, A.V., Bazanov, M.I., and Yurina, E.S., Electrochemical and electrocatalytic properties of metal-polymer and macroheterocyclic complexes with cobalt, Elektrohimicheskaja energetika (in Russian), 2010, vol. 10, no. 3, p. 141.]
  14. Ndebele, N., Sen, P., and Nyokong, T., Electrocatalytic activity of Schiff base containing copper phthalocyanines towards the detection of catechol: Effect of heteroatoms and asymmetry, Polyhedron, 2021, vol. 210, p. 115518. https://doi.org/10.1016/j.poly.2021.115518
  15. Vashurin, A., Kuzmin, I., Razumov, M., Golubchikov, O., and Koifman, O., Catalytically Active Systems of Cobalt Complexes with Water-Soluble Phthalocyanines, Macroheterocycles, 2018, vol. 11, no. 1, p. 11. https://doi.org/10.6060/mhc180168v
  16. Kovanova, M.A., Derbeneva, P.D., Postnov, A.S., Tikhomirova, T.V., and Vashurin, A.S., Electrochemical Deposition of Aggregated Cobalt Sulfophthalocyanines at Gold Surfaces in Alkaline Solutions, Macroheterocycles, 2022, vol. 15, no. 1, p. 34. https://doi.org/10.6060/mhc224233k
  17. De Wael, K. and Adriaens, A., Comparison between the electrocatalytic properties of different metal ion phthalocyanines and porphyrins towards the oxidation of hydroxide, Talanta, 2008, vol. 74, p. 1562. https://doi.org/ 10.1016/j.talanta.2007.09.034
  18. Kulinich, V.P., Shaposhnikov, G.P., and Badaukaite, R.A., Sulfonaphthyloxysubstituted phthalonitriles and phthalocyanines on their basis, Macroheterocycles, 2010, vol. 3, p. 23. https://doi.org/ 10.6060/mhc2010.1.23
  19. Kulinich, V.P., Shaposhnikov, G.P., Gorelov, V.N., and Chernyaeva, E.A., Synthesis and properties of metal phthalocyanines based on disulfophthalic acid, Russ. J. Gen. Chem., 2006, vol. 76, p. 1331. https://doi.org/10.1134/S1070363206080317
  20. Peeters, K., De Wael, K., Bogaert, D., and Adriaens, A., The electrochemical detection of 4-chlorophenol at gold electrodes modified with different phthalocyanines, Sens. Actuators B Chem., 2008, vol. 128, no. 2, p. 494. https://doi.org/ 10.1016/j.snb.2007.07.039
  21. Ciardelli, F., Tsuchida, E., and Wöhrle, D., Macromolecule-Metal Complexes. Springer-Verlag Berlin Heidelberg, Eds.: Ciardelli, F., Tsuchida, E., Wöhrle, D., 1996, p. 318.
  22. Zagal, J.H., Griveau, S., Silva, J.F., Nyokong, T., and Bedioui, F., Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions, Coord. Chem. Rev., 2010, vol. 254, no. 23–24, p. 2755. https://doi.org/ 10.1016/j.ccr.2010.05.001
  23. Leznoff, C.C., Phthalocyanines, properties and application. New York: VCH, Eds.: Leznoff, C. C., Lever, A.B.P., 1996, vol. 4, 536 р.
  24. Lever, A.B.P., Pickens, S.R., Minor, P.C., Licoccia, S., Ramaswamy, B.S., and Magnell, K., Charge-transfer spectra of metallophthalocyanines: correlation with electrode potentials, J. Am. Chem. Soc., 1981, vol. 103, no. 23, p. 6800.
  25. Voronina, A.A., Filippova, A.A., Znoiko, S.A., Vashurin, A.S., and Maizlish, V.E., Effect of the solvation properties of the solvent on the formation of associated structures of water-soluble Co(II) phthalocyanines, Russ. J. Inorg. Chem., 2015, vol. 60, no. 11, p. 1407.
  26. Vashurin, A.S., Non-covalent associates of metal phthalocyanines: the role of axial ligand and catalytic activity, Russ. Chem. Bull., 2016, vol. 65, no. 9, p. 2220.
  27. De Wael K., Westbroek P., and Temmerman E., Study of the deposition of a cobalt(II)tetrasulfophthalocyanine layer at gold surfaces in alkaline solution, J. Electroanal. Chem., 2004, vol. 567, no. 2, p. 167. https://doi.org/ 10.1016/j.jelechem.2003.12.021
  28. Kumar, A., Gonçalves, J.M., Furtado, V.L., Araki, K., Angnes, L., Bouvet, M., Bertotti, M., and Meunier-prest, R., Mass transport in nanoporous gold and correlation with surface pores for EC1 mechanism: case of ascorbic acid, ChemElectroChem, 2021, vol. 8, no. 11, p. 2129. https://doi.org/ 10.1002/celc.202100440
  29. Pamuk, D., Taşdemir, İ.H., Ece, A., Canel, E., and Kılıç, E., Redox pathways of aliskiren based on experimental and computational approach and its voltammetric determination, J. Braz. Chem. Soc., 2013, vol. 24, no. 8, p. 1276. https://doi.org/ 10.5935/0103-5053.20130162
  30. Caro, C.A., Bedioui, F., and Zagal, J.H., Electrocatalytic oxidation of nitrite on a vitreous carbon electrode modified with cobalt phthalocyanine, Electrochim. Acta, 2002, vol. 47, no. 9, p. 1489. https://doi.org/ 10.1016/S0013-4686(01)00875-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulae of tetra-4-sulfophthalocyaninates of nickel(II) and copper(II)

Download (92KB)
3. Fig. 2. CVA curves recorded at unmodified gold electrode (curve 1) and at CuPc (2) and NiPc (3) modified electrodes in Na2HPO4/NaOH buffer solution at pH 12 (25°C, background electrolyte - 0.1 M TBAP) containing 0.01 M NaOH (25°C) at a linear sweep rate of 100 mV/s potential

Download (81KB)
4. Fig. 3. SEM images of the surfaces of unmodified (a) and modified NiPc (b) gold electrodes

Download (474KB)
5. Fig. 4. SEM images of the surface of the NiPc modified gold electrode taken at different magnifications: (a) 20 μm; (b) 5 μm; (c) 1 μm

Download (506KB)
6. Fig. 5. (a) Anodic voltammetry branches of hydroxide ion oxidation at the gold electrode modified NiPc in Na2HPO4/NaOH buffer solution at pH 12 (25.0°C, background electrolyte - 0.1 M TBAP) at different scanning speeds: 10 mV/s (1), 25 mV/s (2), 50 mV/s (3), 75 mV/s (4), 100 mV/s (5). (b) Dependence of lgIp - lgν for NiPc anodic currents. (c) Dependence of Ip - ν0.5 for NiPc anodic currents. (d) Relationship between Ipv-1/2 and ν. (e) Relationship between Ep and lgν

Download (204KB)

Copyright (c) 2024 Russian Academy of Sciences