Synthesis, Ionic Mobility and Conductivity of Composites of Tin and Lead Difluorides Based on 19F NMR and Impedance Spectroscopy Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ionic mobility and conductivity of eutectic composites and compounds of the close composition obtained in PbF2–SnF2 system by different pathways were studied by means of 19F NMR and impedance methods. The stages of transformation of the 19F NMR spectra of the obtained samples, their connection with the types of ionic movements and possible factors influencing the value of ionic conductivity were considered. It has been established that the composition of most composites includes a fluorite phase, characterizing by high values of ionic mobility and conductivity. In a region close to the eutectic, a single-phase sample with a fluorite structure was obtained for the first time. The value of the specific conductivity of the resulting phase (5 × 10–3 S/cm at 390 K) allows us to consider the latter as the basis for obtaining functional materials.

Full Text

Restricted Access

About the authors

A. B. Slobodyuk

Institute of Chemistry of the Far East Branch of the Russian Academy of Sciences

Author for correspondence.
Email: ampy@ich.dvo.ru
Russian Federation, Vladivostok

I. A. Telin

Institute of Chemistry of the Far East Branch of the Russian Academy of Sciences

Email: ampy@ich.dvo.ru
Russian Federation, Vladivostok

M. M. Polyantsev

Institute of Chemistry of the Far East Branch of the Russian Academy of Sciences

Email: ampy@ich.dvo.ru
Russian Federation, Vladivostok

N. F. Uvarov

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: ampy@ich.dvo.ru
Russian Federation, Novosibirsk

V. Ya. Kavun

Institute of Chemistry of the Far East Branch of the Russian Academy of Sciences

Email: kavun@ich.dvo.ru
Russian Federation, Vladivostok

References

  1. Федоров, П.П., Трубицын, М.Ю., Трновцева, В., Соболев, Б.П. Получение эвтектического композита в системе LiF – PbF2. Неорган. материалы. 1992. Т. 28. № 10–11. С. 2215. [Fedorov, P.P., Trubitsyn, M.Y., Trnovtseva, V., and Sobolev, B.P. Obtaining the eutectic composition in the LiF-PbF2 system, Inorg. Mater., 1992. vol. 28, no. 10–11, p. 1805.]
  2. Trnovcova, V., Fedorov, P.P., Barta, C., Labas, V., Meleshina, V.A., and Sobolev, B.P., Microstructure and physical properties of superionic eutectic composites of the LiF-RF3 (R = rare earth element) system, Solid State Ionics, 1999, vol.119, p.173. https://doi.org/10.1016/S0167-2738(98)00500-1
  3. Maier, J. Superionic solids and solid electrolytes / Eds A.L. Lasker, S. Chandra. Academ. Press, 1989. P. 137–184.
  4. Kumar, M., Yamada, K., Okuda, T., and Sekhon, S.S., Temperature dependence of 19F NMR and ion transport parameters of fluoride ion conductors SnF2–PbF2 and 2SnF2–NH4F prepared by mechanical milling, Phys. Status. Sol. (B), 2003, vol. 239, p. 432.
  5. Uno, M., Onitsuka, M., Ito, Y., and Yoshikado, S., Synthesis and evaluation of Pb1-xSnxF2 by mechanical milling, Solid State Ionics, 2005, vol. 176, p. 2493.
  6. Сорокин, Н.И., Федоров, П.П., Никольская, О.К. и др. Электрофизические свойства PbSnF4, полученного различными методами. Неорганические материалы. 2001. Т. 37. С. 1378. [Sorokin, N.I., Fedorov, P.P., Nikolʹskaya O.K., et al., Electrical Properties of PbSnF4 Materials Prepared by Different Methods, Inorg. Mater., 2001, vol. 37, p. 1178.]
  7. Подгорбунский, А.Б., Синебрюхов, С.Л., Гнеденков, С.В., Гончарук, В.К., Кавун, В.Я., Усольцева, Т.И. Влияние фторидов элементов первой группы на ионную проводимость системы SnF2–MF. Вестник ДВО РАН. 2010. № 5. С. 12. [Podgorbunsky, A.B., Sinebrukhov, S.L., Gnedenkov, S.V., Goncharuk, V.K., Kavun, V. Ya., and Usoltseva, T.I., Effect of fluorides of the first group elements on the ionic conductivity of SnF2-MF system, Vestnik DVO RAN (In Russian), 2010, no. 5, p. 12.]
  8. Слободюк, А.Б., Усольцева, Т.И., Гончарук, В.К., Кавун, В.Я. Образование и ионно-транспортные свойства твердых растворов на основе SnF2, допированного фторидом щелочного металла (по данным ЯМР). Вестник ДВО РАН. 2017. № 6. С. 39. [Slobodyuk, A.B., Usoltseva, T.I., Goncharuk, V.K., and Kavun, V. Ya., Formation and ion transport properties of the solid solutions based on SnF2 doped with alkali metal fluoride (according to the NMR data), Vestnik DVO RAN (In Russian), 2017, no. 6, p. 39.]
  9. Бучинская, И.И., Федоров, П.П. Дифторид свинца и системы с его участием. Успехи химии. 2004. Т. 73. С. 404. [Buchinskaya, I.I. and Fedorov, P.P., Lead difluoride and related systems, Russ. Chem. Rev., 2004, vol. 73, p. 371.]
  10. Федоров, П.П., Гончарук, В.К., Масленникова, И.Г., Телин, И.А., Глазунова, Т.Ю. Фазовая диаграмма системы PbF2–SnF2. Журн. неорган. химии. 2016. Т. 61. C. 252. [Fedorov, P.P., Goncharuk, V.K., Maslennikova, I.G. Telin, I.A., and Glazunova, T.Yu., Diagram of the PbF2–SnF2 system., Russ. J. Inorg. Chem., 2016, vol. 61, p. 239.]
  11. Кавун, В.Я., Уваров, Н.Ф., Слободюк, А.Б., Улихин, А.С., Телин, И.А., Гончарук, В.К. Ионная подвижность и электрофизические свойства твердых растворов в системах PbF2–SbF3 и PbF2–SnF2–SbF3. Электрохимия. 2017. Т. 53. С. 991. [Kavun, V. Ya., Slobodyuk, A.B., Telin, I.A., Goncharuk, V.K., Uvarov, N.F., and Ulikhin, A.S., Ionic mobility and electrophysical properties of solid solutions in PbF2–SbF3 and PbF2–SnF2–SbF3 systems, Russ. J. Eleсtrochem., 2017, vol. 53, p. 884.]
  12. Ito, Y., Mukoyama, T., Ashio, K., Yamamoto, K., Suga, Y., Yoshikado, S., Julien, C., and Tanaka, T., Ionic conduction and crystal structure of β-Pb1-xSnxF2 (× 0.3), Solid State Ionics, 1998, vol. 106, p. 291.
  13. Lucat, C., Rhandour, A., Cot, L., and Reau, J.M., Conductivite de lʹion fluor dans la solution solide Pb1-xSnxF2, Solid State Commun., 1979, vol. 32, p. 167.
  14. Сорокин, Н.И. Твердые электролиты на основе SnF2. Неорганические. материалы. 2004. Т. 40. С. 1128. [Sorokin, N.I., SnF2-based solid electrolytes, Inorg. Mater., 2004, vol. 40, p. 989.]
  15. Perez, G., Vilminot, S., Granier, W., Cot, L., Lucat, C., Reau, J.-M. Portier, J., and Hagenmuller, P., About the allotropic transformation of PbSnF4, Mater.Res.Bull., 1980, vol. 15, p. 587.
  16. Denes, G. and Madamba, M.C., Effect of preparation and impurities on the size and shapes of the crystallites and on the crystal symmetry of superionic PbSnF4, Mater. Res. Soc. Symp. Proc., 2000, vol. 580, p. 171.
  17. Calandrino, R., Collin, A., Denes, G., Madamba, M.C., and Parris, J.M., Phase stability and properties of superionic PbSnF4 as a function of the method of preparation, Matter. Res. Soc. Symp. Proc., 1997, vol. 453, p. 585.
  18. Лундин, А.Г., Федин, Э.И. ЯМР-спектроскопия. М.: Наука, 1986, 224 с. [Lundin, A.G. and Fedin, E.I., NMR Spectroscopy (in Russian), Moscow: Nauka, 1986, 224 p.]
  19. Абрагам, А. Ядерный магнетизм. М.: Изд-во иностр. лит., 1963. 552 с. [Abragam, A., The principles of nuclear magnetism, Oxford: Clarendon Press, 1962, 599 p.].
  20. Зеер, Э.П., Зобов, В.Е., Фалалеев, О.В. Новые эффекты в ЯМР поликристаллов. Новосибирск: Наука, 1991. 184 с. [Zeer, E.P., Zobov, V.E., and Falaleev, O.V., New effects in NMR of polycrystals (in Russian), Novosibirsk: Nauka, 1991, 184 p.]
  21. Габуда, С.П., Гончарук, В.К., Кавун, В.Я., Куликов, А.П., Петровский, Г.Т. Определение структуры ближнего порядка фторцирконатных стекол по данным анизотропии химических сдвигов сигналов ЯМР 19F. Докл. АН СССР. 1987. Т. 296. № 5. С. 1150. [Gabuda, S.P., Goncharuk, V.K., Kavun, V.J., Kulikov, A.P., and Petrovskii, G.T., Determination of the short-range order structure of fluorozirconate glasses based on the anisotropy of chemical shifts of 19F NMR signals, Doklady Akademii Nauk SSSR (In Russian), 1987, vol. 296, p. 1150.]
  22. Slobodyuk, A.B., Kavun, V.Ya., Uvarov, N.F., Merkulov, E.B., and Polyantsev, M.M., NMR and complex impedance study of ionic motion in new Rb0.4Bi0.6–xInxF2.2 solid solutions with fluorite-type structure, Solid State Ionics, 2021, vol. 360, p. 115545. https://doi.org/10.1016/j.ssi.2020.115545
  23. Кавун, В.Я., Рябов, А.И., Телин, И.А., Подгорбунский, А.Б., Синебрюхов, С.Л., Гнеденков, С.В., Гончарук, В.К. Ионная подвижность и проводимость в PbSnF4, допированного фторидом щелочного металла по данным ЯМР и импедансной спектроскопии. Журн. структур. химии. 2012. Т. 53. № 2. С. 305. [Kavun, V. Ya., Ryabov, A.I., Telin, I.A., Podgorbunskii, A.B., Sinebryukhov, S.L., Gnedenkov, S.V., and Goncharuk, V.K., NMR and impedance spectroscopy data on the ionic mobility and conductivity in PbSnF4 doped with alkali metal fluoride, J. Structur. Chem., 2012, vol. 53, no. 2, p. 290.]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of the studied samples. 1-3: samples E1 - E3, 4, 5 - samples MC1 and MC2, 6 - α-PbSnF4

Download (203KB)
3. Fig. 2. 19F NMR spectra of model samples of β-PbF2 (a) and SnF2 (b) at different temperatures. Decomposition of one of the spectra into components described by Blombergen-Rowland and Gauss functions (b, dashed line)

Download (266KB)
4. Fig. 3. Transformation of 19F NMR spectra of PbSnF4 samples (a) and fluorite phases MC1 and MC2 (b, c) at temperature variations

Download (282KB)
5. Fig. 4. 19F NMR spectra of E1-E3 eutectics (a-c) at different temperatures

Download (229KB)
6. Fig. 5. Temperature dependences of the second moment of the 19F NMR spectra of the studied samples

Download (116KB)
7. Fig. 6. Impedance hodographs of samples E1, E2, MC1 and MC2 obtained at 323 K, graphs (a) - (d), respectively. Dots - experimental data, lines - curves obtained for the theoretical dependences obtained for the equivalent circuit presented in the graph (a)

Download (269KB)
8. Fig. 7. Temperature dependences of specific conductivity of the studied samples

Download (121KB)

Copyright (c) 2024 Russian Academy of Sciences