Kinetics of electrodeposition of composite electrochemical coating of nickel-cobalt-aluminum oxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetic features of the process of electrodeposition of a wear- and corrosion-resistant composite electrochemical coating (CEC) nickel-cobalt-aluminum oxide from a colloidal chloride electrolyte are studied. The use of potentiodynamic, chronopotentiometric and temperature-kinetic methods, as well as the use of the calculated values of the temperature coefficient of the reaction rate and the diffusion coefficients of nickel ions, made it possible to establish the mechanism of CEC electrodeposition. An analysis of the research data on the kinetic features of CEC electrodeposition showed that the nature of the slow stage of the studied process is due to the electrophoretic transfer of electroactive particles to the cathode and the stage of overgrowth of dispersed particles adsorbed on the cathode surface with electrodeposited metals, proceeding at comparable rates.

Full Text

Restricted Access

About the authors

K. V. Ovchinnikova

Don State Technical University

Email: degtiar@yandex.ru
Russian Federation, Gagarin Sq., 1, Rostov-on-Don, 344000

I. G. Bobrikova

South Russian State Polytechnic University

Email: degtiar@yandex.ru
Russian Federation, Prosveshcheniya St., 132, Novocherkassk, 346428

I. Yu. Zhukova

Don State Technical University

Email: degtiar@yandex.ru
Russian Federation, Gagarin Sq., 1, Rostov-on-Don, 344000

A. A. Kuts

Don State Technical University

Email: degtiar@yandex.ru
Russian Federation, Gagarin Sq., 1, Rostov-on-Don, 344000

L. A. Degtyar

Don State Technical University

Author for correspondence.
Email: degtiar@yandex.ru
Russian Federation, Gagarin Sq., 1, Rostov-on-Don, 344000

References

  1. Сайфуллин, Р.С. Неорганические композиционные материалы, М.: Химия, 1983. 303 с. [Saifullin, R.S., Inorganic composite materials (in Russian), Moscow: Chemistry, 1983. 303 p.]
  2. Гурьянов, Г.В. Электроосаждение износостойких композиций, Кишинев: Штиинца, 1985. 238 с. [Guryanov, G.V., Electrodeposition of wear-resistant compositions (in Russian), Chisinau: Shtiintsa, 1985. 238 p.].
  3. Jelinek, T.W., Fortschrite in der Galvanotekchnik. Eine Auswertung der international Fachliteratur 2003–2004, Galvanotekchnik, 2005, vol. 96, no. 1, ss. 42–71.
  4. Коробова, И.В. Структура и свойства композиционных электролитических покрытий на основе сплава никель-кобальт. Вопр. химии и хим. технологии. 2011. № 4. С. 261. [Korobova, I.V., Structure and properties of composite electrolytic coatings based on nickel-cobalt alloy (in Russian), Vopr. chemistry and chem. technol., 2011, no. 4, p. 261].
  5. Tebbakh, S., Messaoudi, Y., Azizi, A., Fenineche, N., Schmerber, G., and Dinia, A., The influence of saccharin on the electrodeposition and properties of Co–Ni alloy thin films, J. Trans. IMF, 2015, vol. 93, no. 4, p. 196.
  6. Walsh, F. C. and Ponce de Leon, C., A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: An established and diversifying technology, J. Trans. IMF, 2014, vol.92, p. 83.
  7. Lajevardi, S.A., Shahrabi, T., and Szpunarc, J.A., Tribological Properties of Functionally Graded Ni-Al2O3 Nanocomposite Coating, J. Electrochem. Soc., 2017, vol. 164, p. 275.
  8. Балакай, В.И., Мурзенко, К.В., Старунов, А.В., Арзуманова, А.В., Балакай, И.В. Cвойства композиционного электролитического покрытия никель-кобальт-оксид кремния-фторопласт. Перспективные материалы. 2017. № 12. C.51. [Balakai, V.I., Murzenko, K.V., Starunov, A.V., Arzumanova, A.V., and Balakay, I.V., Properties of the composite electrolytic coating nickel-cobalt-silicon oxide–fluoroplastic (in Russian), Perspektivnyye Materialy, 2017, no. 12, p. 51.]
  9. Целуйкин, В.Н., Соловьева, Н.Д., Гулькин, И.Ф. Электроосаждение композиционных покрытий никель-фуллерен С60. Защита металлов. 2007. Т. 43. № 4. С. 418. [Tseluikin V.N., Solov’eva N.D., and Gun’kin I.F., Protection Metals, 2007, vol. 43, no. 4, p. 388.]
  10. Jabbar, A., Ghulam Yasin, G., Khan, W.Q., Anwar, M.Y., Korai, R.M., Nizam M.N., and Muhyodin, G., Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance., RSC Adv., 2017, vol. 7, p. 31100.
  11. Shi, L., Sun, C.F., Gao, P., Zhou, F., and Liu, W.M., Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings, Surf. Coat. Technol., 2006, vol. 200, p. 4870.
  12. Винокуров, Е.Г., Марголин, Л.Н., Фарафонов, В.В. Электроосаждение композиционных покрытий. Изв. вузов. Сер. Химия и хим. технология. 2020. Т. 63 (8). С. 4. [Vinokurov, E.G., Margolin, L.N., and Farafonov, V.V., Electrodeposition of composite coatings (in Russian). News of higher educational institutions. Ser. Chemistry and Chemical Technology, 2020, vol. 63 (8), p. 4.]
  13. Jović, V.D., Lačnjevac, U.Č., and Jović, B.M., Electrodeposition and Characterization of Alloys and Composite Materials, in: S. Djokić (Eds.), Modern Aspects of Electrochemistry, New York, Heidelberg, Dordrecht, London: Springer, 2014, p. 1–84.
  14. Low, C.T.J., Wills, R.G.A., and Walsh., F.C., Electrodeposition of composite coatings containing nanoparticles in a metal deposit, J. Surface and Coatings Technol., 2006, vol. 201, no. 1–2, p. 371.
  15. Łosiewicz, B., Electrodeposition Mechanism of Composite Coatings, Solid State Phenomena, 2015, vol. 228, p. 65.
  16. Abdel Hamid, Z., Review Article: Composite and Nanocomposite Coatings, J. Metallurg. Engineering, 2014, vol. 3, p. 29.
  17. Guglielmi, N., Kinetics of the Deposition of Inert Particles from Electrolytic Baths, J. Electrochem. Soc., 1972, vol. 119, p. 1009.
  18. Lekka, M., Electrochemical Deposition of Composite Coatings. In book: Encyclopedia of Interfacial Chemistry, 2018, no. 5.1, p. 54–67.
  19. Kuo, S.L., Chen, Y.C., Ger, M.D., and Hwu, W.H., Nano-Particles Dispersion Effect on Ni/Al2O3 Composite Coatings, J. Mater. Chem. and Phys., 2004, vol. 86, no. 1, p. 5.
  20. Fransaer, J., Celis, J.P, and Roos, J.R., Analysis of the electrolytic codeposition of non‐brownian particles with metals, J. Electrochem. Soc., 1992, vol. 139, no. 2, p. 413.
  21. Галюс, З. Теоретические основы электрохимического анализа. М.: Мир, 1974. 552 с. [Galius, Z., Theoretical Foundations of Electrochemical Analysis (in Russian). M.: Mir, 1974. 552 p.]
  22. Jovic, V.D., Jovic, B.M., Maksimovic, V.S., and Pavlovic, M.G., Electrodeposition and Morphology of Ni, Co and Ni –Co Alloy Powders Part II. Ammonium Chloride Supporting Electrolyte, J. Electrochim. Acta, 2007, vol. 52, p. 4254.
  23. Сосновская, Н.Г., Истомина, Н.В., Синеговская, Л.М., Розенцвейг, И.Б., Корчевин, Н.А. Электроосаждение блестящих никелевых покрытий из сульфатного электролита в присутствии изотиурониевых солей. Гальванотехника и обработка поверхности. 2019. Т. 27. № 4. С.4. [Sosnovskaya, N.G., Istomina, N.V., Sinegovskaya, L.M., Rosenzweig, I.B., and Korchevin, N.A., Electrodeposition of shiny nickel coatings from sulfate electrolyte in the presence of isothiuronium salts (in Russian), Electroplating and surface treatment, 2019, vol. 27, no. 4, p. 4.]
  24. Шеханов, Р.Ф., Гридчин, С.Н., Балмасов, А.В., Румянцева, К.Е. Электроосаждение сплавов кобальт-никель и цинк-никель из сульфаматно-хлоридных электролитов. Изв. вузов. Химия и хим. технология. Иваново: Иванов. гос. хим.-технол. ун-т, 2014. Т. 57. № 8. С. 4. [Shekhanov, R.F., Gridchin, S.N., Balmasov, A.V., and Rumyantseva, K.E., Electrodeposition of cobalt-nickel and zinc-nickel alloys from sulfamate-chloride electrolytes (in Russian). Izv. universities. Chemistry and chem. technology. Publisher: Ivanovo State University of Chemical Technology (Ivanovo), 2014, vol. 57, no. 8, p. 4.
  25. Кудрявцева, И.Д., Балакай, В.И., Кукоз Ф.И. Электроосаждение металлов из электролитов-коллоидов, ВИНИТИ: Итоги науки и техники. Сер. Электрохимия. 1990. Т. 33. С. 50. [Kudryavtseva, I.D., Balakai, V.I., and Kukoz, F.I., Electrodeposition of metals from colloidal electrolytes, VINITI: Itogi Nauki i Tekhniki. Ser. Electrochemistry, 1990, vol. 33, P. 50.]
  26. Degtyar, L.A., Zhukova, I.Y., and Mishurov, V.I., Experience and Perspectives of Electrodeposition from Electrolytes-Colloids of Nickel Plating, Mater. Sci. Forum, 2019, vol. 945, p. 682.
  27. Kudrjavtzeva, I.D., High speed electroplating in low-concentrate colloid-electrolyte baths, J. Trans. IMF, 1999, vol. 77, no. 5, p.178.
  28. Мурзенко, К.В., Кудрявцев, Ю.Д., Балакай, В.И. Свойства композиционного электролитического покрытия никель-кобальт-оксид алюминия, осажденного из хлоридного электролита. Журн. прикл. химии. 2013. Т. 86. № 8. С. 1261. [Murzenko, K.V., Kudryavtsev, Y.D., and Balakai, V.I., Properties of composite nickel-cobalt-aluminum oxide coating deposited from chloride electrolyte, Russ. J. Appl. Chem., 2013, vol. 86, no. 8, p. 1235.]
  29. Перелыгин, Ю.П., Кабанов, С.В., Киреев, С.Ю. Температурно-кинетический метод в гальванотехнике. Изв. вузов. Поволжский регион. Естественные науки. Химия. 2014. № 4 (8). C. 62. [Perelygin, Yu. P., Kabanov, S.V., and Kireev, S.Yu., Temperature-kinetic method in electroplating (in Russian). News of higher educational institutions. Volga region. Natural Sciences. Chemistry, 2014, no. 4 (8), p. 62.]
  30. Сухотин, А.М. Справочник по электрохимии. Л.: Химия, 1981. 488 с. [Sukhotin, A.M., Handbook of electrochemistry (in Russian). L.: Chemistry, 1981. 488 p.]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Potentiodynamic dependences of nickel-cobalt-aluminum oxide CEP release in chloride electrolyte. Electrolyte temperature, °C: 1 – 20; 2 – 30; 3 – 40; 4 – 50; 5 – 60.

Download (104KB)
3. Fig. 2. Dependences of lgj on 1/T (a) at overvoltages, V: 1 – 1.25; 2 – 1.00; 3 – 0.75; 4 – 0.55; and activation energy from overvoltage (b) for deposition of nickel-cobalt-aluminum oxide CEC in chloride electrolyte.

Download (89KB)
4. Fig. 3. Dependence of the product j τ1/2 on the current density j in the chloride electrolyte for deposition of nickel-cobalt-aluminum oxide CEP. Temperature, °C: 1 – 20; 2 – 30; 3 – 40; 4 – 50; 5 – 60.

Download (126KB)
5. Fig. 4. Dependence of the value of the product j τ1/2 on the temperature in the chloride electrolyte for the deposition of nickel-cobalt-aluminum oxide CEP.

Download (126KB)
6. Fig. 5. Dependence of the limiting current density on the rate of change of potential to the power of ½ in a chloride electrolyte for deposition of nickel-cobalt-aluminum oxide electroplating material. Temperature, °C: 1 –20; 2 – 60.

Download (89KB)

Copyright (c) 2024 Russian Academy of Sciences