Fabrication of NiO-Ce0.8Gd0.2O2-based anode for a solid oxide fuel cell using inkjet 3D printing and study of its microstructure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A paste composition for inkjet 3D printing based on the NiO-Ce0.8Gd0.2O2 composite was developed and an anode billet for a solid oxide fuel cell of planar geometry was made using direct inkjet 3D printing. Effect of the printing mode and thermal annealing on the morphology and structure of the samples has been studied. The anode billet was reduced and the resulting sample was characterized by a number of physicochemical methods.

Full Text

Restricted Access

About the authors

A. D. Asmedianova

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: asmedianova@gmail.com
Russian Federation, Novosibirsk; Novosibirsk

A. S. Bagishev

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences

Email: asmedianova@gmail.com
Russian Federation, Novosibirsk

O. A. Logutenko

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences

Email: asmedianova@gmail.com
Russian Federation, Novosibirsk

A. I. Titkov

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences

Email: asmedianova@gmail.com
Russian Federation, Novosibirsk

References

  1. Organization for Economic Co-operation and Development (OECD)/International Energy Agency (IEA), Key World Energy Statistics 2014, OECD, Paris, 2014.
  2. Tai, X.Y., Zhakeyev, A., Wang, H., Jiao, K., Zhang, H., and Xuan, J., Accelerating fuel cell development with additive manufacturing technologies: state of the art, opportunities and challenges, Fuel Cells, 2019, vol. 19, no. 6, p. 636.
  3. Buccheri, M., Singh, A., and Hill, J.M., Anode versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane, J. Power Sources, 2011, vol. 196, no. 3, p. 969.
  4. Bagotsky, V.S., Skundin, A.M., and Volfkovich Y.M., Electrochemical power sources, John Wiley & Sons, Inc., Hoboken, NJ, USA 2015, p. 199–212.
  5. Shaikh, S.P.S, Muchtar, A., and Somalu, M.R., A review on the selection of anode materials for solid-oxide fuel cells, Renewable Sustainable Energy Rev., 2015, vol. 51, p. 1.
  6. Iwanschitz, B., Sfeir, J., Mai, A., and Schütze, M., Degradation of SOFC anodes upon redox cycling: a comparison between Ni/YSZ and Ni/CGO, J. Electrochem. Soc., 2010, vol. 157, no. 2, p. B269.
  7. Pihlatie, M., Kaiser, A., and Mogensen, M., Redox stability of SOFC: thermal analysis of Ni/YSZ composite, Solid State Ionics, 2009, vol. 180, no. 17–19, p. 1100.
  8. Истомин, С.Я., Антипов, Е.В. Катодные материалы на основе перовскитоподобных оксидов переходных металлов для среднетемпературных твердооксидных топливных элементов. Успехи химии. 2013. Т. 82. Вып. 7. С. 686.
  9. Weller, C., Kleer, R., and Piller, F.T., Economic implications of 3D printing: market structure models in light of additive manufacturing revisited, Int. J. Prod. Econ., 2015, vol. 164, p. 43.
  10. Zhongqi, Z.H.U. and Zhiyuan, G.O.N.G., Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks, J. Adv. Ceram., 2021, vol. 10, no. 2.
  11. Han, G.D. and Bae, K., Inkjet printing for manufacturing solid oxide fuel cells, ACS Energy Lett., 2020, vol. 5, p. 1586.
  12. Anelli, S., Rosa, M., Baiutti, F., Torrell, M., Esposito, V., and Tarancon, A., Hybrid-3D printing of symmetric solid oxide cells by inkjet printing and robocasting, Addit. Manuf., 2022, vol. 51, p. 102636.
  13. Nguyen, X.V., Chang, C.T., Jung, G.B., Chan, S.H., Huang, W.C.W., Hsiao, K.J., Lee, W.T., Chang, S.W., and Kao, I.C., Effect of sintering temperature and applied load on anode-supported electrodes for SOFC application, Energies, 2016, vol. 9, no. 9, p. 701.
  14. Skalar, T., Lubej, M., and Marinsek, M., Optimization of operating conditions in a laboratory SOFC testing device, Article in Mater. and Technol., 2015, vol. 49, no. 5, p. 734.
  15. Bagishev, A., Titkov, A., Vorobyev, A., Borisenko, T., Bessmeltsev, V., Katasonov, D., and Nemudry, A., Development of composite electrode materials based on nickel oxide for additive manufacturing of fuel cells, MATEC Web of Conferences, 2021, vol. 340, 01054.
  16. Багишев, А.С., Мальбахова, И.А., Воробьев, А.М., Борисенко, Т.А., Асмедьянова, А.Д., Титков, А.И., Немудрый, А.П. Послойное формирование композитного анода NiO/CGO для ТОТЭ струйной 3D-печатью в комбинации с лазерной обработкой. Электрохимия. 2022. Т. 58. С. 1.
  17. Modak, C.D., Kumar, A., Tripathy, A., and Sen, P., Drop impact printing, Nat. Commun., 2020, vol. 11, 4327.
  18. Song, C., Lee, S., Gu, B., Chang, I., Cho, G.Y., Baek, J.D., and Cha, S.W., A study of anode-supported solid oxide fuel cell modeling and optimization using neural network and multi-armed bandit algorithm, Energies, 2020, vol. 13, no.7, p. 1621.
  19. Uddin, J., Hassan, J., and Douroumis, D., Thermal Inkjet Printing: Prospects and Applications in the Development of Medicine, Technologies, 2022, vol. 10, p. 6.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Particle size distribution curves of nickel oxide before and after grinding in a bead mill.

Download (83KB)
3. Fig. 2. Particle size distribution curves of GDC before and after grinding in a bead mill. recovery of anode blanks.

Download (86KB)
4. Fig. 3. Dependence of the dynamic viscosity of NiO-GDC paste on the shear rate.

Download (65KB)
5. Fig. 4. Micrographs of anode blanks obtained by casting (a, c) and inkjet printing (b, d) methods at two magnifications.

Download (724KB)
6. Fig. 5. Thermogram of the NiO-GDC anode blank.

Download (66KB)
7. Fig. 6. Modes of thermal sintering of anode blanks.

Download (110KB)
8. Fig. 7. Images of composite anode blanks obtained by casting (a), inkjet printing (b) and after annealing according to program 3 (c).

Download (56KB)
9. Fig. 8. Schematic diagram of a furnace for the restoration of anode blanks.

Download (29KB)
10. Fig. 9. X-ray diffraction patterns of NiO-GDC samples before sintering (a), after sintering (b) and after reduction of the sintered sample at 600°C (c).

Download (93KB)
11. Fig. 10. Micrographs of Ni-GDC composite anode after reduction.

Download (322KB)

Note

Публикуется по материалам IX Всероссийской конференции с международным участием “Топливные элементы и энергоустановки на их основе”, Черноголовка, 2022.


Copyright (c) 2024 Russian Academy of Sciences