Synthesis and physico-chemical properties La0.9Sr0.1Sc1 – xMnxO3 – δ ceramic materials with mixed electron and ion conductivity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Perovskite-like materials with mixed ionic and electronic conductivity are considered as promising functional materials for proton-ceramic electrochemical devices. In the present work, a solid solutions series La0.9Sr0.1Sc1 xMnxO3 δ, where B-cation position scandium ions are gradually replaced by manganese ions, was obtained and studied in first time. The obtained materials were certified by X-ray phase analysis, scanning electron microscopy, and energy-dispersive microanalysis. The dopant influence on the sinterability and morphology researched materials is shown. The solid solutions electrical conductivity as a function of temperature and gas phase humidity were investigated by direct current four-probe method.

Full Text

Restricted Access

About the authors

O. S. Bervitskaya

Vyatka State University

Author for correspondence.
Email: usr20264@vyatsu.ru
Russian Federation, Kirov

A. Y. Stroeva

Vyatka State University

Email: usr20264@vyatsu.ru
Russian Federation, Kirov

B. A. Ananchenko

Vyatka State University

Email: usr20264@vyatsu.ru
Russian Federation, Kirov

V. A. Ichetovkina

Vyatka State University

Email: usr20264@vyatsu.ru
Russian Federation, Kirov

A. V. Kuzmin

Vyatka State University

Email: a.v.kuzmin@yandex.ru
Russian Federation, Kirov

References

  1. Bonanos, N., Knight, K., and Ellis, B., Perovskite solid electrolytes: structure, transport properties and fuel cell application, Solid State Ionics, 1995, vol. 79, р. 161.
  2. Kim, J., Sengodan, S., Kim, S., Kwon, O., Bu, Y., and Kim, G., Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage, Renew SustEnerg Rev., 2019, vol. 109, р. 606.
  3. Nomura, K. and Tanase, S., Electrical behavior in (La0.9Sr0.1) MO3–δ (M = Al, Ga, Sc, In, and Lu) perovskites, Solid State Ionics, 1997, vol. 98, р. 229.
  4. Lybye, D., Poulsen, F.-W., and Mogensen, M., Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites, Solid State Ionics, 2000, vol. 128, p. 91.
  5. Kasyanova, A.V., Rudenko, A.O., Lyagaeva, Y.G., and Medvedeva, D.A., Lanthanum-Containing Proton-Conducting Electrolytes with Perovskite Structures, Membr. Membr. Technol., 2021, vol. 3, p. 73.
  6. Wang, X., Peng, X., Ran, H., Lin, B., Ni, J., Lin, J., and Jiang, L., Influence of Ru Substitution on the Properties of LaCoO3 Catalysts for Ammonia Synthesis: XAFS and XPS Studies, Ind. Eng. Chem. Res., 2018, vol. 57, p. 17375.
  7. Zakharov, D.M., Zhuravlev, N.A., Denisova, T.A., Belozerov, A.S., Stroeva, A.Y., Vovkotrub, E.G., Farlenkov, A.S., and Ananyev, M.V., Catalytic methane activation over La1–xSrxScO3–α proton-conducting oxide surface: а comprehensive study, J. Catalysis, 2021, vol. 394, p. 67.
  8. Bispo, A., Morais, A., Calado, C., Mazali, I., and Sigoli, F., Lanthanide-doped luminescent perovskites: A review of synthesis, properties, and applications, J. Luminesc., 2022, vol. 252, p. 119406.
  9. Park, J., Wu, Y., Saidi, W., Chorpening, B., and Duan, Y., First-principles exploration of oxygen vacancy impact on electronic and optical properties of ABO3–δ (A = La, Sr; B = Cr, Mn) perovskites, Phys. Chem. Chem. Phys., 2020, vol. 22/46, p. 27163.
  10. Wei, H., Chen, X., Wu, Y., and Cao, B., Controlling the electronic and magnetic properties in epitaxial LaMnO3/LaScO3 superlattices, J. Phys. D: Appl. Phys., 2022, vol. 55, p. 495112.
  11. Okuyama, Y., Kozai, T., Ikeda, S., Matsuka, M., Sakaid, T., and Matsumoto, H., Incorporation and conduction of proton in Sr-doped LaMO3 (M = Al, Sc, In, Yb, Y), Electrochim. Acta, 2014, vol. 125, p. 443.
  12. Nomura, K., Takeuchi, T., Kamo, S., Kageyama, H., and Miyazaki, Y., Proton conduction in doped LaScO3 perovskites, Solid State Ionics, 2004, vol. 175, p. 553.
  13. Горелов, В.П., Строева, А.Ю. Протонные твердые электролиты на основе LаScO3. Электрохимия. 2012. Т. 48. С. 1044. [Gorelov, V.P. and Stroeva, A. Yu., Russ. J. Electrochem., 2012, vol.48, p. 949.]
  14. Plekhanov, М., Kuzmin, A., Tropin, E., Korolev, D., and Ananyev, M., New mixed ionic and electronic conductors based on LaScO3: Protonic ceramic fuel cells electrodes, J. Power Sources, 2020, vol. 449, p. 227476.
  15. Fujii, H., Katayama, Y., Shimura, T., and Iwahara, H., Protonic conduction in perovskite-type oxide ceramics based on LnScO3 (Ln = La, Nd, Sm or Gd) at high temperature, J. Electroceram., 1998, vol. 2, p. 119.
  16. Lesnichyova, A., Stroeva, A., Belyakov, S., Farlenkov, A., Shevyrev, N., Plekhanov, M., Khromushin, I., Aksenova, T., Ananyev, M., and Kuzmin, A., Water Uptake and Transport Properties of La1–xCaxScO3–α Proton-Conducting Oxides, Materials, 2019, vol. 12, p. 2219.
  17. Строева, А.Ю., Горелов, В.П. Природа проводимости в перовскитах Lа1–xSrxScO3–α (x=0.01÷0.15) в окислительных и восстановительных условиях. Электрохимия. 2012. Т. 48. C. 1184. [Stroeva, A. Yu. and Gorelov, V.P., Russ. J. Electrochem, 2012, vol. 48, p. 1079.]
  18. Kim, K.H., Lee, H., and Lee, L., Proton conduction in La0.6Ba0.4ScO2.8 cubic perovskite, Solid State Ionics, 2001, vol. 144, p. 109.
  19. Hyoung, K., Hye, L., Kim, L., Kim, S., and Lee, H.L., Phase formation and electrical conductivity of Ba-doped LaScO3, Japan J. Appl. Phys., 2005, vol. 44, p. 5025.
  20. Carda, M., Budac, D., Paidar, M., and Bouzek, K., Current trends in the description of lanthanum strontium manganite oxygen electrode reaction mechanism in a high-temperature solid oxide cell, Curr. Opinion in Electrochem., 2022, vol. 31, p. 100852.
  21. Zheng, Y., Zhang, C., Ran, R., Cai, R., Shao, Z., and Farrusseng, D., A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3–δ perovskite oxide as both the anode and cathode, Acta Materialia, 2009, vol. 57, p. 1165.
  22. Su, C., Wu, Y., Wang, W., Zheng, Y., Ran, R., and Shao, Z., Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel, J. Power Sources, 2010, vol. 195, p. 1333.
  23. Plekhanov, M., Thomä, S. L., Zobel, M., Cuello, G., Fischer, H., Raskovalov, A., and Kuzmin, A., Correlating Proton Diffusion in Perovskite Triple-Conducting Oxides with Local and Defect Structure, Chem. Mater., 2022.
  24. Mizusaki, J., Yonemura, Y., Kamata, H., Ohyama, K., Mori, N., Takai, H., Tagawa, H., Dokiya, M., Naraya, K., Sasamoto, T., Inaba, H., and Hashimoto, T., Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3, Solid State Ionics, 2000, vol. 132, p. 167.
  25. Jiang, S.P., Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review, J. Mater. Sci., 2008, vol. 43, p. 6799.
  26. Dai, H., Yin, Y., Li, X., Ma, C., Chen, Z., Hua, M., and Bi, L., A new Sc-doped La0.5Sr0.5MnO3–δ cathode allows high performance for proton-conducting solid oxide fuel cells, Sustainable Mater. and Technol., 2022, vol. 32, р. 00409.
  27. Rietveld, H.M., The Rietveld Method: A retrospection, Z. für Kristallographiе, 2010, vol. 225, р. 545.
  28. Toby, B.H. and Von Dreele, R.D., GSAS-II: the genesis of a modern open-source all purpose crystallography software package, J. Appl. Crystallography, 2013, vol. 46, р. 544.
  29. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica, 1976, vol. 32, р. 751.
  30. Luo, Х., Yang, Y., Yang, Y., Tian, D., Lu, X., Chen, Y., Huang, Q., and Lin, B., Reduced-temperature redox-stable LSM as a novel symmetrical electrode material for SOFCs, Acta Electrochim., 2018, vol. 260, p. 121.
  31. Kuzmin, A.V., Stroeva, A. Yu., Gorelov, V.P., Novikova, Yu.V., Lesnichyova, A.S., Farlenkov, A.S., and Khodimchuk, A.V., Synthesis and characterization of dense proton-conducting La1–xSrxScO3–α ceramics, Intern. J. Hydrogen Energy, 2019, vol. 44, p. 1130.
  32. Ghosh, A., Sahu, A.K., Gulnar, A.K., and Suri, A.K., Synthesis and characterization of lanthanum strontium manganite, Scripta Mater., 2005, vol. 52, p. 1305.
  33. Mori, T., Inoue, K., and Kamegashira, N., Phase behavior in the system LaxSr1–xMnO(5+x)/2 (x=0.8–1.0) with trivalent state of manganese ion, J. Alloys and Compounds, 2000, vol. 308, p. 87.
  34. Darvish, S., Sabarou, H., Saxena, S., and Zhong, Y., Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3±δ perovskite, J. Electrochem. Soc., 2015, vol. 162, p. 134.
  35. Gua, H., Zheng, Y., Ran, R., Shao, Z., Jina, W., Xua, N., and Ahn, J., Synthesis and assessment of La0.8Sr0.2ScyMn1–yO3–δ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte, J. Power Sources, 2008, vol. 183, p. 471.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of calcination temperature on the phase formation of La0.9Sr0.1Mn0.8Sc0.2O3 – δ.

Download (82KB)
3. Fig. 2. Dependence of the density of La0.9Sr0.1Sc1 – xMnxO3 – δ (x = 0.02–0.20) ceramics sintered at 1550 °C on the temperature of preliminary variation annealing.

Download (84KB)
4. Fig. 3. Dependence of the density of the resulting La0.9Sr0.1Sc1 – xMnxO3 – δ ceramics on the dopant concentration at sintering temperatures of 1450, 1550 and 1650 oC. The inset shows microphotographs of broken ceramic samples La0.9Sr0.1Sc0.95Mn0.05O3 – δ and La0.9Sr0.1Sc0.8Mn0.2O3 – δ, sintered at a temperature of 1550 oC.

Download (218KB)
5. Fig. 4. Microphotographs of the resulting La0.9Sr0.1Sc0.95Mn0.05O3 – δ powder after the combustion stage (a), after grinding (b).

Download (274KB)
6. Fig. 5. Microphotographs of broken ceramics La0.9Sr0.1Sc0.95Mn0.05O3 – δ (a) and La0.9Sr0.1Sc0.6Mn0.4O3 – δ (b).

Download (177KB)
7. Fig. 6. X-ray diffraction patterns of La0.9Sr0.1Sc1– xMnxO3 – δ.

Download (115KB)
8. Fig. 7. Concentration dependence of the unit cell volume La0.9Sr0.1Sc1– xMnxO3 – δ; unit cell volume obtained by the Rietveld method (square icons); volume of a pseudocubic cell with Mn3+ (solid line); volume of a pseudocubic cell with Mn4+ (dashed line).

Download (69KB)
9. Fig. 8. Temperature dependences of La0.9Sr0.1Sc1– xMnxO3 – δ samples in an atmosphere of dried air pH2O ≤ 0.1 kPa (a) and in an atmosphere of humidified air pH2O = 2.8 kPa (b).

Download (141KB)
10. Fig. 9. Concentration dependence of the conductivity of La0.9Sr0.1Sc1 – xMnxO3 – δ samples at a temperature of 800 °C in an atmosphere of dried air (pH2O ≤ 0.1 kPa) and in an atmosphere of humidified air (pH2O = 2.8 kPa).

Download (60KB)

Copyright (c) 2024 Russian Academy of Sciences