(C4H9)3CH3NBF4–Сnanodiamonds
- Authors: Stebnitsky I.A.1,2, Uvarov N.F.1,2, Mateyshina Y.G.1,2
-
Affiliations:
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk State University
- Issue: Vol 60, No 1 (2024)
- Pages: 24-32
- Section: Articles
- URL: https://medjrf.com/0424-8570/article/view/671679
- DOI: https://doi.org/10.31857/S0424857024010037
- EDN: https://elibrary.ru/GMXURI
- ID: 671679
Cite item
Abstract
The paper presents the results of studies of the structural, thermal and transport properties of solid composite electrolytes (1 – x)(C4H9)3CH3NBF4 – xCND (where CND are nanosized diamonds, 0 ≤ x < 1, x is the mole fraction). It has been shown by the Powley method that the crystal structure of the low-temperature phase (C4H9)3CH3NBF4 is described by the space symmetry group P42/ncm. It was found that the addition of a nanodiamond inert additive leads to an increase in the electrical conductivity of the composite electrolyte by 4 orders of magnitude up to a value of 1.3∙10–3 S/cm at 145°C at x = 0.98. The theoretical dependences describe well the experimental data in the concentration range 0 ≤ x ≤ 0.99 at temperatures of 84 and 127 оC.
Full Text

About the authors
I. A. Stebnitsky
Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University
Author for correspondence.
Email: YuliaM@solid.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
N. F. Uvarov
Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University
Email: YuliaM@solid.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
Yu. G. Mateyshina
Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University
Email: YuliaM@solid.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
References
- Иванов-Шиц, А.К., Мурин, И.В. Ионика твердого тела. Т. 2. СПб: Изд-во СПбГУ, 2010. 1000 с. [Ivanov-Schitz, A.K. and Murin, I.V., Solid state ionics (in Russian), St. Petersburg: S.-Peterburg. Univ, 2010. 1000 p.]
- Уваров, Н.Ф. Композиционные твердые электролиты. Новосибирск: Изд. СО РАН, 2008, 258 с. [Uvarov. N.F., Composite solid electrolytes (in Russian), Novosibirsk: Publ. House SB RAS, 2008. 258 p.]
- Zhang, Z., Wang, X., Li, X., Zhao, J., Liu, G., Yu, W., Dong, X., and Wang, J., Review on composite solid electrolytes for solid-state lithium-ion batteries, Mater. Today Sustain, 2023, in press.
- Xu, L., Li, J., Shuai, H., Luo, Zh., Wang, B., Fang, S., Zou, G., Hou, H., Peng, H., and Ji, X., Recent advances of composite electrolytes for solid-state Li batteries, J. Energy Chem., 2022, vol. 67, p. 524.
- Jian, S., Cao, Y., Feng, W., Yin, G., Zhao, Y., Lai, Y. Zhang, T., Ling, X., Wu, H., Bi, H., and Dong, Y., Recent progress in solid polymer electrolytes with various dimensional fillers: a review, Mater. Today Sustain, 2022, vol. 20, 100224.
- Sun, Y-Y., Zhang, Q., Yan, L., Wang, T-B., and Hou, P-Y., A review of interfaces within solid-state electrolytes: fundamentals, issues and advancements, J. Chem. Eng., 2022, vol. 437, part 1, 135179.
- Pringle, J.M., Recent progress in the development and use of organic ionic plastic crystal electrolytes, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 1339.
- MacFarlane, D.R. and Forsyth, M., Plastic Crystal Electrolyte Materials: New Perspectives on Solid State Ionics, Adv. Mater., 2001, vol.13, no. 12–13, p. 957.
- Sherwood, J.N., The Plastically Crystalline State: Orientationally Disordered Crystals, John Wiley & Sons, Ltd., 1979, p. 416.
- Huang, J., Hill, A., Forsyth, M., MacFarlane, D., and Hollenkamp, A., Conduction in ionic organic plastic crystals: The role of defects, Solid State Ion., 2006, vol. 177, p. 2569.
- Pringle, J.M., Howlett, P.C., MacFarlane, D.R., and Forsyth, M., Organic ionic plastic crystals: recent advances, J. Mater. Chem., 2010, vol. 20, p. 2056.
- MacFarlane, D.R., Huang, J., and Forsyth, M., Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries, Nature, 1999, vol. 402, p. 792.
- Zhou, Zh-B. and Matsumoto, H., Lithium-doped, organic ionic plastic crystal electrolytes exhibiting high ambient-temperature conductivities, Electrochem. Commun., 2007, vol. 9, p. 1017.
- Howlett, P.C., Shekibi, Y., MacFarlan, D.R., and Forsyth, M., Li-Metal Symmetrical Cell Studies Using Ionic Organic Plastic Crystal Electrolyte, Adv. Eng. Mater., 2009, vol. 11, no. 12, p. 1044.
- Basile, A., Hilder, M., Makhlooghiazad, F., Pozo-Gonzalo, C., MacFarlane, D.R., Howlett, P.C., and Forsyth, M., Ionic Liquids and Organic Ionic Plastic Crystals: Advanced Electrolytes for Safer High Performance Sodium Energy Storage Technologies, Adv. Energy Mater., 2018, vol. 8, 1703491.
- Rana, U.A., Forsyth, M., Macfarlane, D.R., and Pringle, J.M., Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells, Electrochim. Acta, 2012, vol. 84, p. 213.
- Luo, J., Jensen, A.H., Brooks, N.B., Sniekers, J., Knipper, M., Aili, D., Li, Q., Vanroy, B., Wübbenhorst, M., et.al., 1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells, Energy Environ. Sci., 2015, vol. 8 (4), p. 1276.
- Abouimrane, A., Belharouak, I., and Abu-Lebdeh, Y.A., An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte, Front. Energy Res., 2015, vol. 3, p. 1.
- Uvarov, N.F., Iskakova, A.A., Bulina, N.V., Gerasimov, K.B., Slobodyuk, A.B., and Kavun, V. Ya., Ion Conductivity of the Plastic Phase of the Organic Salt [(C4H9)4N]BF4, Russ. J. Electrochem., 2015, vol. 51, p. 491.
- Uvarov, N.F., Ulihin, A.S., and Mateyshina, Yu. G., Advanced Nanomaterials for Catalysis and Energy Synthesis, Characterization and Applications, in A volume in Advanced Nanomaterials, Vladislav A. Sadykov Ed., Amsterdam: Elsevier Science Ltd., 2019, p. 587.
- Maier, J., Ionic conduction in space charge regions, Prog. Solid State Chem., 1995, vol. 23, p. 171–263.
- Shekibi, Y., Gray-Weale, A., MacFarlane, D.R., Hill, A.J., and Forsyth, M., Nanoparticle Enhanced Conductivity in Organic Ionic Plastic Crystals: Space Charge versus Strain Induced Defect Mechanism, J. Phys. Chem. C, 2007, vol. 111, p.11463.
- Ulihin, A.S., Uvarov, N.F., Rabadanov, K. Sh., Gafurov, M.M., and Gerasimov, K.B., Thermal, structural and transport properties of composite solid electrolytes (1 – x) (C4H9)4NBF4–xAl2O3, Solid State Ion., 2022, vol. 378, 115889.
- Adebahr, J., Ciccosillo, N., Shekibi, Y., MacFarlane, D.R., Hill, A.J., and Forsyth, M., The “filler-effect” in organic ionic plastic crystals: Enhanced conductivity by the addition of nano-sized TiO2, Solid State Ion., 2006, vol. 177, iss. 9–10, p. 827.
- Ulikhin, A.S., Uvarov, N.F., Gerasimov, K.B., Iskakova, A.A., and Mateishina, Yu.G., Physicochemical Properties of (CH3)2NH2Cl–Al2O3 Composites, Russ. J. Electrochem., 2017, vol. 53, p. 834.
- Mateyshina, Y.G., Alekseev, D.V., and Uvarov, N.F., Ionic Transport in CsNO2-Based Nanocomposites with Inclusions of Surface Functionalized Nanodiamonds, Nanomaterials, 2021, vol. 11, p. 414.
- Alekseev, D.V., Mateyshina, Yu.G., and Uvarov, N.F., Transport Properties of LiClO4 –Nanodiamond Composites, Russ. J. Electrochem., 2021, vol. 57, p. 1037.
- Mateyshina, Yu., Alekseev, D., and Uvarov, N., The effect of the nanodiamonds additive on ionic conductivity of silver iodide, Mater. Today: Proc., 2020, p. 373.
- Alekseev, D.V., Mateyshina, Yu.G., and Uvarov, N.F., Effect of Nanodiamond Additives on the Ionic Conductivity of the (C2H5)3CH3NBF4 Organic Salt, Russ. J. Electrochem., 2022, vol. 58, no. 7, p. 594.
- Pawley, G.S., Unit-cell refinement from powder diffraction scans, J. Appl. Crystallogr., 1981, vol. 14, p. 357.
- https://abcr.com/ru_en/ab333813
- Uvarov, N.F. and Boldyrev, V.V., Size effects in chemistry of heterogeneous systems, Russ. Chem. Rev., 2001, vol. 70, p. 265.
- Uvarov, N.F., Vanek, P., Yuzyuk, Yu.I., Zelezny, V., Studnicka, V., Bokhonov, B.B., Dulepov, V.E., and Petzelt, J., Properties of rubidium nitrate in ion-conducting RbNO3-Al2O3 nanocomposites, Solid State Ion., 1996, vol. 90, p. 201.
- Uvarov, N.F., Composite solid electrolytes: recent advances and design strategies, J. Solid State Electrochem., 2011, vol.15, p. 367.
Supplementary files
