(C4H9)3CH3NBF4–Сnanodiamonds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of studies of the structural, thermal and transport properties of solid composite electrolytes (1 – x)(C4H9)3CH3NBF4 xCND (where CND are nanosized diamonds, 0 ≤ x < 1, x is the mole fraction). It has been shown by the Powley method that the crystal structure of the low-temperature phase (C4H9)3CH3NBF4 is described by the space symmetry group P42/ncm. It was found that the addition of a nanodiamond inert additive leads to an increase in the electrical conductivity of the composite electrolyte by 4 orders of magnitude up to a value of 1.3∙10–3 S/cm at 145°C at x = 0.98. The theoretical dependences describe well the experimental data in the concentration range 0 ≤ x ≤ 0.99 at temperatures of 84 and 127 оC.

Full Text

Restricted Access

About the authors

I. A. Stebnitsky

Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University

Author for correspondence.
Email: YuliaM@solid.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

N. F. Uvarov

Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University

Email: YuliaM@solid.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

Yu. G. Mateyshina

Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University

Email: YuliaM@solid.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Иванов-Шиц, А.К., Мурин, И.В. Ионика твердого тела. Т. 2. СПб: Изд-во СПбГУ, 2010. 1000 с. [Ivanov-Schitz, A.K. and Murin, I.V., Solid state ionics (in Russian), St. Petersburg: S.-Peterburg. Univ, 2010. 1000 p.]
  2. Уваров, Н.Ф. Композиционные твердые электролиты. Новосибирск: Изд. СО РАН, 2008, 258 с. [Uvarov. N.F., Composite solid electrolytes (in Russian), Novosibirsk: Publ. House SB RAS, 2008. 258 p.]
  3. Zhang, Z., Wang, X., Li, X., Zhao, J., Liu, G., Yu, W., Dong, X., and Wang, J., Review on composite solid electrolytes for solid-state lithium-ion batteries, Mater. Today Sustain, 2023, in press.
  4. Xu, L., Li, J., Shuai, H., Luo, Zh., Wang, B., Fang, S., Zou, G., Hou, H., Peng, H., and Ji, X., Recent advances of composite electrolytes for solid-state Li batteries, J. Energy Chem., 2022, vol. 67, p. 524.
  5. Jian, S., Cao, Y., Feng, W., Yin, G., Zhao, Y., Lai, Y. Zhang, T., Ling, X., Wu, H., Bi, H., and Dong, Y., Recent progress in solid polymer electrolytes with various dimensional fillers: a review, Mater. Today Sustain, 2022, vol. 20, 100224.
  6. Sun, Y-Y., Zhang, Q., Yan, L., Wang, T-B., and Hou, P-Y., A review of interfaces within solid-state electrolytes: fundamentals, issues and advancements, J. Chem. Eng., 2022, vol. 437, part 1, 135179.
  7. Pringle, J.M., Recent progress in the development and use of organic ionic plastic crystal electrolytes, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 1339.
  8. MacFarlane, D.R. and Forsyth, M., Plastic Crystal Electrolyte Materials: New Perspectives on Solid State Ionics, Adv. Mater., 2001, vol.13, no. 12–13, p. 957.
  9. Sherwood, J.N., The Plastically Crystalline State: Orientationally Disordered Crystals, John Wiley & Sons, Ltd., 1979, p. 416.
  10. Huang, J., Hill, A., Forsyth, M., MacFarlane, D., and Hollenkamp, A., Conduction in ionic organic plastic crystals: The role of defects, Solid State Ion., 2006, vol. 177, p. 2569.
  11. Pringle, J.M., Howlett, P.C., MacFarlane, D.R., and Forsyth, M., Organic ionic plastic crystals: recent advances, J. Mater. Chem., 2010, vol. 20, p. 2056.
  12. MacFarlane, D.R., Huang, J., and Forsyth, M., Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries, Nature, 1999, vol. 402, p. 792.
  13. Zhou, Zh-B. and Matsumoto, H., Lithium-doped, organic ionic plastic crystal electrolytes exhibiting high ambient-temperature conductivities, Electrochem. Commun., 2007, vol. 9, p. 1017.
  14. Howlett, P.C., Shekibi, Y., MacFarlan, D.R., and Forsyth, M., Li-Metal Symmetrical Cell Studies Using Ionic Organic Plastic Crystal Electrolyte, Adv. Eng. Mater., 2009, vol. 11, no. 12, p. 1044.
  15. Basile, A., Hilder, M., Makhlooghiazad, F., Pozo-Gonzalo, C., MacFarlane, D.R., Howlett, P.C., and Forsyth, M., Ionic Liquids and Organic Ionic Plastic Crystals: Advanced Electrolytes for Safer High Performance Sodium Energy Storage Technologies, Adv. Energy Mater., 2018, vol. 8, 1703491.
  16. Rana, U.A., Forsyth, M., Macfarlane, D.R., and Pringle, J.M., Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells, Electrochim. Acta, 2012, vol. 84, p. 213.
  17. Luo, J., Jensen, A.H., Brooks, N.B., Sniekers, J., Knipper, M., Aili, D., Li, Q., Vanroy, B., Wübbenhorst, M., et.al., 1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells, Energy Environ. Sci., 2015, vol. 8 (4), p. 1276.
  18. Abouimrane, A., Belharouak, I., and Abu-Lebdeh, Y.A., An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte, Front. Energy Res., 2015, vol. 3, p. 1.
  19. Uvarov, N.F., Iskakova, A.A., Bulina, N.V., Gerasimov, K.B., Slobodyuk, A.B., and Kavun, V. Ya., Ion Conductivity of the Plastic Phase of the Organic Salt [(C4H9)4N]BF4, Russ. J. Electrochem., 2015, vol. 51, p. 491.
  20. Uvarov, N.F., Ulihin, A.S., and Mateyshina, Yu. G., Advanced Nanomaterials for Catalysis and Energy Synthesis, Characterization and Applications, in A volume in Advanced Nanomaterials, Vladislav A. Sadykov Ed., Amsterdam: Elsevier Science Ltd., 2019, p. 587.
  21. Maier, J., Ionic conduction in space charge regions, Prog. Solid State Chem., 1995, vol. 23, p. 171–263.
  22. Shekibi, Y., Gray-Weale, A., MacFarlane, D.R., Hill, A.J., and Forsyth, M., Nanoparticle Enhanced Conductivity in Organic Ionic Plastic Crystals: Space Charge versus Strain Induced Defect Mechanism, J. Phys. Chem. C, 2007, vol. 111, p.11463.
  23. Ulihin, A.S., Uvarov, N.F., Rabadanov, K. Sh., Gafurov, M.M., and Gerasimov, K.B., Thermal, structural and transport properties of composite solid electrolytes (1 – x) (C4H9)4NBF4–xAl2O3, Solid State Ion., 2022, vol. 378, 115889.
  24. Adebahr, J., Ciccosillo, N., Shekibi, Y., MacFarlane, D.R., Hill, A.J., and Forsyth, M., The “filler-effect” in organic ionic plastic crystals: Enhanced conductivity by the addition of nano-sized TiO2, Solid State Ion., 2006, vol. 177, iss. 9–10, p. 827.
  25. Ulikhin, A.S., Uvarov, N.F., Gerasimov, K.B., Iskakova, A.A., and Mateishina, Yu.G., Physicochemical Properties of (CH3)2NH2Cl–Al2O3 Composites, Russ. J. Electrochem., 2017, vol. 53, p. 834.
  26. Mateyshina, Y.G., Alekseev, D.V., and Uvarov, N.F., Ionic Transport in CsNO2-Based Nanocomposites with Inclusions of Surface Functionalized Nanodiamonds, Nanomaterials, 2021, vol. 11, p. 414.
  27. Alekseev, D.V., Mateyshina, Yu.G., and Uvarov, N.F., Transport Properties of LiClO4 –Nanodiamond Composites, Russ. J. Electrochem., 2021, vol. 57, p. 1037.
  28. Mateyshina, Yu., Alekseev, D., and Uvarov, N., The effect of the nanodiamonds additive on ionic conductivity of silver iodide, Mater. Today: Proc., 2020, p. 373.
  29. Alekseev, D.V., Mateyshina, Yu.G., and Uvarov, N.F., Effect of Nanodiamond Additives on the Ionic Conductivity of the (C2H5)3CH3NBF4 Organic Salt, Russ. J. Electrochem., 2022, vol. 58, no. 7, p. 594.
  30. Pawley, G.S., Unit-cell refinement from powder diffraction scans, J. Appl. Crystallogr., 1981, vol. 14, p. 357.
  31. https://abcr.com/ru_en/ab333813
  32. Uvarov, N.F. and Boldyrev, V.V., Size effects in chemistry of heterogeneous systems, Russ. Chem. Rev., 2001, vol. 70, p. 265.
  33. Uvarov, N.F., Vanek, P., Yuzyuk, Yu.I., Zelezny, V., Studnicka, V., Bokhonov, B.B., Dulepov, V.E., and Petzelt, J., Properties of rubidium nitrate in ion-conducting RbNO3-Al2O3 nanocomposites, Solid State Ion., 1996, vol. 90, p. 201.
  34. Uvarov, N.F., Composite solid electrolytes: recent advances and design strategies, J. Solid State Electrochem., 2011, vol.15, p. 367.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray phase analysis data for composites (1 - x) (C4H9)3CH3NBF4 – xCHA. The right figure shows a section of the diffraction pattern in the angle range 35 < 2θ < 50 degrees, in which there is a reflection related to nanodiamonds.

Download (139KB)
3. Fig. 2. DSC curves for composites (1-x) (C4H9)3CH3NBF4 – xCHA, obtained during the first (a) and second (b) heating.

Download (140KB)
4. Fig. 3. Experimental values ​​of the enthalpy of melting of tributylmethylammonium tetrafluoroborate in composites (1 – x) (C4H9)3CH3NBF4 – xCHA (symbols) in comparison with the expected value for a mechanical mixture of salt + nanodiamonds (line) depending on the mole (a) and volume (b) fraction nanodiamonds.

Download (106KB)
5. Fig. 4. Impedance hodographs of the 0.01(C4H9)3CH3NBF4 – 0.99CHA composites, measured at temperatures of 100 and 152 °C. Equivalent circuit used to interpret the data, where Rb is the volume resistance of the sample, CPEb and CPEe are the constant phase elements describing the geometric capacitance of the sample and the electrode impedance, respectively (b).

Download (94KB)
6. Fig. 5. Temperature dependence of the conductivity of the composites (1 – x) (C4H9)3CH3NBF4 – xCNA (x is the mole fraction of CNA) (a) and the dependence of the specific conductivity of the composites (1 – x)(C4H9)3CH3NBF4 – xCNA depending on the concentration of CNA nanodiamonds in composites at temperatures of 90 and 130 oC (b).

Download (165KB)
7. Fig. 6. Experimental (dots) and theoretical (solid line) concentration dependences of the specific conductivity of composites (1 – x) (C4H9)3CH3NBF4 – xCHA on the mole fraction (a) and volume fraction (b) of nanodiamonds for temperatures of 84 and 127 oC.

Download (123KB)

Copyright (c) 2024 Russian Academy of Sciences