Investigation of the stability of microtube membranes based on Ba0.5Sr0.5Co0.8 – xFe0.2MoxO3 – δ oxides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present article is devoted to the study of the stability of microtubular membranes based on Ba0.5Sr0.5Co0.8 – xFe0.2MoxO3 – δ oxides obtained by the phase inversion method. The work shows that MT membranes of the composition BSCFMx exhibit long-term stability and resistance to thermal cycling in an air/helium gradient. The maximum oxygen fluxes were achieved using an MT membrane of composition Ba0.5Sr0.5Co0.75Fe0.2Mo0.05O3 – δ (JO2 =7.6 ml*cm-2min-1 at Т=850 oС and pO2.1 = 0.21 atm). In this work, a detailed equilibrium phase diagram for the BSCFM5 oxide has been obtained. The absence of unwanted phase transitions has been demonstrated.

Full Text

Restricted Access

About the authors

E. V. Shubnikova

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences

Author for correspondence.
Email: artimonovalena@yandex.ru
Russian Federation, 630128, Novosibirsk

O. A. Bragina

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences

Email: artimonovalena@yandex.ru
Russian Federation, 630128, Novosibirsk

A. P. Nemudry

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences

Email: artimonovalena@yandex.ru
Russian Federation, 630128, Novosibirsk

References

  1. Shao, Z., Yang, W., Cong, Y., Dong, H., Tong, J., and Xiong, G., Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 − δ Shao, Z.P. and Haile, S.M., A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 2004, vol. 431, p. 170. doi: 10.1038/nature02863
  2. Yaremchenko, A.A., Patrakeev, M.V., Naumovich, E.N., and Khalyavin, D.D. p(O2) - T stability domain of cubic perovskite Ba0.5Sr0.5Co0.8Fe0.2O3 − δ, Phys. Chem. Chem. Phys., 2018, vol. 20, p. 4442. doi: 10.1039/C7CP07307K
  3. Efimov, K., Xu, Q., and Feldhoff, A., Transmission Electron Microscopy Study of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ Perovskite Decomposition at Intermediate Temperatures, Chem. Mater., 2010, vol. 22, p. 5866. doi: 10.1021/cm101745v
  4. Shubnikova, E.V., Bragina, O.А., and Nemudry, A.P., Mixed conducting molybdenum doped BSCF materials, J. Industrial and Engineering Chem., 2017, vol. 59, p. 242. doi: 10.1016/j.jiec.2017.10.029
  5. Gasparyan, H., Claridge, J.B., and Rosseinsky, M.J., Oxygen permeation and stability of Mo-substituted BSCF membranes, J. Mater. Chem., 2015, vol. 3, p. 18265. doi: 10.1039/C5TA04046A
  6. Shubnikova, E.V., Popov, M.P., Bychkov, S.F., Chizhik, S.A., and Nemudry, A.P., The modeling of oxygen transport in MIEC oxide hollow fiber membranes, Chem. Engineering J., 2019, vol. 372, p. 251. doi: 10.1016/j.cej.2019.04.126
  7. Popov, M.P., Starkov, I.A., Bychkov, S.F., and Nemudry, A.P., Improvement of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ functional properties by partial substitution of cobalt with tungsten, J. Membr. Sci., 2014, vol. 469, p. 88. doi: 10.1016/j.memsci.2014.06.022
  8. Wan, Z., Kathiraser, Y., Soh, T., and Kawi, S., Ultra-high oxygen permeable BaBiCoNb hollow fiber membranes and their stability under pure CH4 atmosphere, J. Membrane Sci., 2014, vol. 465, p.151. doi: 10.1016/j.memsci.2014.04.025
  9. Leo, A., Motuzas, J., Yacou, C., Liu, S., Serra, J.M., Navarrete, L., Drennan, J., Julbe, A., and Diniz da Costa, J.C., Copper oxide - perovskite mixed matrix membranes delivering very high oxygen fluxes, J. Membrane Sci., 2017, vol. 526, p. 323. doi: 10.1016/j.memsci.2016.12.035
  10. Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct AC heating of oxygen transport membranes, Solid State Ionics, 2017, vol. 312, p. 73. doi: 10.3390/en13010030
  11. Starkov, I.A., Bychkov, S.F., Chizhik, S.A., and Nemudry, A.P., Oxygen release from grossly nonstoichiometric SrCo0.8Fe0.2O3 − δ perovskite in isostoichiometric mode, Chem. Mat, 2014, vol. 26(6), p. 2113. doi: 10.1021/cm4040775
  12. Chizhik, S.A. and Nemudry, A.P., Nonstoichiometric oxides as a continuous homologous series: linear free-energy relationship in oxygen exchange, Phys. Chem. Chem. Phys., 2018, vol. 20, p. 18447. doi: 10.1039/C8CP02924E
  13. Demont, A., Sayers, R., Tsiamtsouri, M.A., Romani, S., Chater, P.A., Niu, H., Martí-Gastaldo, C., Xu, Z., Deng, Z., Bréard, Y., Thomas, M.F., Claridge, J.B., and Rosseinsky, M. J., Single sublattice endotaxial phase separation driven by charge frustration in a complex oxide, J. Amer. Chem. Soc., 2013, vol. 135, p. 10114. doi: 10.1021/ja403611s
  14. Shin, F., Xu, W., Zanella, M., Dawson, K., Savvin, S.N., Claridge, J.B., and Rosseinsky, M. J., Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells, Nature Energy, 2017, vol. 2, p. 1624. doi: 10.1038/nenergy.2016.214
  15. Popov, M.P., Bychkov, S.F., Bulina, N.V., and Nemudry, A.P., In situ high-temperature X-Ray diffraction of hollow fiber membranes under operating conditions, J. European Ceram. Soc., 2019, vol. 39, p. 1717. doi: 10.1016/j.jeurceramsoc.2018.12.008

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a, b, c – SEM images of the cross section of the BSCFM5 MT membrane fabricated using the phase inversion method; d – SEM image of the BSCFM5 MT membrane after testing.

Download (424KB)
3. Fig. 2. X-ray diffraction patterns of MT membranes of composition BSCFMx (x = 0; 2, 5, 10%) before (1) and after (2) tests, the double perovskite phase (Ba/Sr)CoMoO6 is designated *.

Download (83KB)

Copyright (c) 2024 Russian Academy of Sciences