Kinetics of nucleation during electrodeposition of zinc and nickel from ammonium chloride electrolytes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Zinc-nickel coatings based on the zinc-enriched gamma phase are characterized by maximum corrosion resistance and are the basis for the production of electrocatalytically highly active nanoporous nickel by selective dissolution. Electrodeposition of Zn–Ni alloys is the most common method of their preparation and proceeds by the mechanism of anomalous co-deposition, in which the rate of an electropositive component (nickel) deposition is lower than of an electronegative component (zinc). To obtain coatings with certain morphology, chemical and phase composition, it is necessary to know the kinetic regularities of cathodic deposition of Zn–Ni alloy at the stage of heterogeneous nucleation, the determination of which is the purpose of this work. The kinetics of the process was studied in non-stirred ammonium chloride electrolytes using the methods of cyclic voltammetry and chronoamperometry. The mechanism of heterogeneous nucleation during electrodeposition of zinc and nickel was determined within the framework of the approach by Palomar-Pardave et al., taking into account the contributions of the hydrogen reduction reaction and charging of the double electric layer to the total cathodic current, and for zinc-nickel coatings using the model by Scharifker et al. for electrodeposition of a binary alloy, additionally modified taking into account the experimentally determined dependence the composition of zinc-nickel coatings on time at the nucleation stage of the cathodic deposit formation. Using the method of X-ray spectral analysis, the anomalous nature of deposition of Zn–Ni coatings was confirmed, the ratio of atomic fractions of Ni/Zn in which turned out to be lower than the ratio of concentrations of Ni2+/Zn2+ ions in the electrolyte. It was found that both during electrodeposition of zinc and nickel from their individual solutions and during their anomalous co-deposition, the nucleation rate constant increases with the cathodic potential, but on average does not exceed 3 s–1, which indicates predominantly progressive nucleation. The growth of a new phase, regardless of the chemical composition of the resulting deposit, is limited by the 3D-diffusion of zinc and nickel ions to the electrode surface. The density of nucleation active sites is weakly dependent on the deposition potential, decreasing during the transition from zinc to nickel and zinc-nickel alloys. The contribution of the side reaction of hydrogen reduction as expected is maximum in the case of nickel electrocrystallization. It decreases during the transition to alloys and zinc, increasing with the cathodic potential, which is consistent with the current efficiency of the electrodeposition process.

Full Text

Restricted Access

About the authors

A. E. Tinaeva

Voronezh State University

Email: ok@chem.vsu.ru
Russian Federation, Voronezh

O. A. Kozaderov

Voronezh State University

Author for correspondence.
Email: ok@chem.vsu.ru
Russian Federation, Voronezh

References

  1. Lotfi, N., Aliofkhazraei, M., Rahmani, H., and Barati Darband Gh., Zinc-nickel alloy electrodeposition: characterization, properties, multilayers and composites, Prot. Met. Phys. Chem. Surf., 2018, vol. 54, р. 1102. https://doi.org/10.1134/S2070205118060187
  2. Rashmi, D., Pavithra, G.P., Praveen, B.M. Devapal, D., Nayana, K.O., and Nagaraju, G., Electrodeposition of Zn–Ni monolithic coatings, characterization, and corrosion analysis, J. Fail. Anal. and Preven., 2020, vol. 20, р. 513. https://doi.org/10.1007/s11668-020-00848-3
  3. Anwar, Sh., Zhang, Y., and Khan, F., Electrochemical behaviour and analysis of Zn–Ni alloy anti-corrosive coatings deposited from citrate baths, IOP Conference Series: Mater. Sci. and Engineering, 2018, vol. 458, р. 012005. https://doi.org/10.1088/1757-899X/458/1/012005
  4. Feng, Zh. Li, Q., Zhang, J., Yang, P., Song, H., and An, M., Electrodeposition of nanocrystalline Zn–Ni coatings with single gamma phase from an alkaline bath, Surf. Coat. Tech., 2015, vol. 270. https://doi.org/10.1016/j.surfcoat.2015.03.020
  5. Benballa, M., Nils, L., Sarret, M., and Müller, C., Zinc–nickel codeposition in ammonium baths, Surf. Coat. Tech., 2000, vol. 123, р. 55. https://doi.org/10.1016/S0257-8972(99)00397-7
  6. Barceló, G., García-Lecina, E., Sarret, M., Müller, C., and Pregonas, J., Characterization of zinc–nickel alloys obtained from an industrial chloride bath, J. Appl. Electrochem., 1998, vol. 28, р.1113. https://doi.org/10.1023/A:1003461109203
  7. Hosseini, M.G., Abdolmaleki, M., and Ashrafpoor, S., Preparation, characterization, and application of alkaline leached Ni/Zn–Ni binary coatings for electro-oxidation of methanol in alkaline solution, J. Appl. Electrochem., 2012, vol. 42, р. 153. https://doi.org/10.1007/s10800-012-0382-8
  8. Fukumizu, T., Kotani, F., Yoshida, A., and Katagiri, A., Electrochemical Formation of Porous Nickel in Zinc Chloride-Alkali Chloride Melts, J. Electrochem. Soc., 2006, vol. 153, p. C629. https://doi.org/10.1149/1.2216401
  9. Kaluzhina, S.A., Kozaderov, O.A., Marygina, Yu.I., and Protasova, I.V., Cathodic behavior of the dealloyed Ni-Zn coating in sodium hydroxide solution, Int. J. Corr. Scale Inhib., 2020, vol. 9, р. 334. https://doi.org/10.17675/2305-6894-2020-9-1-22
  10. Cai, J., Xu, J., Wang, J., Zhang, L., Zhou, H., Zhong, Y., Chen, D, Fan, H., Shao, H., Zhang, J., and Cao, Ch., Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction, Int. J. Hydrogen Energy, 2013, vol. 38, р. 934. https://doi.org/10.1016/j.ijhydene.2012.10.084
  11. Barceló, G., García, J., Sarret, Müller, M.C., and Pregonas, J., Properties of Zn–Ni alloy deposits from ammonium baths, J. Appl. Electrochem., 1994, vol. 24, р. 1249. https://doi.org/10.1007/BF00249889
  12. Fratesi, R. and Roventi, G., Electrodeposition of zinc-nickel alloy coatings from a chloride bath containing NH4Cl, J. Appl. Electrochem., 1992, vol. 22, 657. https://doi.org/10.1007/BF01092615
  13. Elkhatabi, F., Sarret, M., and Müller, C., Chemical and phase compositions of zinc + nickel alloys determined by stripping techniques, J. Electroanal. Chem., 1996, vol. 404, р. 45. https://doi.org/10.1016/0022-0728(95)04359-4
  14. Byk, T., Gaevskaya, T.V., and Tsybulskaya, L., Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn–Ni alloy coatings, Surf. Coat. Tech., 2008, vol. 202, р. 5817. https://doi.org/10.1016/j.surfcoat.2008.05.058
  15. Soleimangoli, F., Hosseini, A., Davoodi, A., Mokhtari, A., and Alishahi, M., Effect of NH4Cl on the microstructure, wettability and corrosion behavior of electrodeposited Ni Zn coatings with hierarchical nano/microstructure, Surf. Coat. Tech., 2020, vol. 394, р. 125825. https://doi.org/10.1016/j.surfcoat.2020.125825
  16. Burlyaev, D.V., Tinaeva, A.E., Tinaeva, K.E., and Kozaderov, O.A., Electrodeposition of zinc–nickel coatings from glycine-containing ammonium-chloride electrolyte, Prot. Met. Phys. Chem. Surf., 2020, vol. 56, р. 552. https://doi.org/10.1134/S2070205120030077
  17. Kozaderov, O.A., Tinaeva, K.E., Tinaeva, A.E., and Burliaev, D.V., Cathodic deposition of zinc-nickel coatings from a dilute ammonium chloride electrolyte with a high glycine concentration, Condensed Matter and Interphases, 2020, vol. 22(3), р. 320. https://doi.org/10.17308/kcmf.2020.22/2962
  18. Brenner, A., Electrodeposition of alloys, vol. I, New York and London: Acad. Press, 1963, p. 84.
  19. Roventi, G., Fratesi, R., Guardia, R.D., and Barucca, G., Normal and anomalous codeposition of Zn–Ni alloys from chloride bath, J. Appl. Electrochem., 2000, vol. 30, p. 173. https://doi.org/10.1023/A:1003820423207
  20. Rodriguez-Torres, I., Valentin, G., and Lapicque, F., Electrodeposition of zinc–nickel alloys from ammonia-containing baths, J. Appl. Electrochem., 1999, vol. 29, p. 1035. https://doi.org/10.1023/A:1003610617785
  21. Lin, Y.P. and Selman, J.R., Electrodeposition of corrosion-resistance Ni–Zn alloy. I. Cyclic voltammetric study, J. Electrochem. Soc., 1993, vol. 140(5), p. 1299. http://dx.doi.org/10.1149/1.2220974
  22. Rizwan, R., Mehmood, M., Imran, M., Ahmad, J., Aslam, M., and Akhter, J., Deposition of nanocrystalline zinc-nickel alloys by D.C. plating in additive free chloride bath, Mater. Trans., 2007, vol. 48, p. 1558. https://doi.org/10.2320/matertrans.MER2007022
  23. Chang, B.-Y. and Park, S.-M., Relative contributions of Ni2+ and Zn2+ reduction currents to anomalous electrodeposition of Zn–Ni alloys, J. Electrochem. Soc., 2004, vol. 151(12), p. C786. https://doi.org/10.1149/1.1814032
  24. Müller, C., Sarret, M., and Benballa, M., Some peculiarities in the codeposition of zinc–nickel alloys, Electrochim. Acta, 2001, vol. 46, p. 2811. https://doi.org/10.1016/S0013-4686(01)00493-5
  25. Pinto, J., Quiroz, D., Delvasto, P., and Blanco, S., Characterization of a zinc-nickel alloy coating obtained from an electrolytic bath produced with spent batteries as raw materials, J. Phys. Conf. Ser., 2018, vol. 1119, p. 012005. https://doi.org/10.1088/1742–6596/1119/1/012005
  26. Zakiyya, H. and Kekesi, T., Potentiodynamic study of the effects of nickel on the electrodeposition of zinc from chloride media, Int. J. Eng. Manag. Sci., 2023, vol. 8, p. 15. https://doi.org/10.21791/IJEMS.2023.2.2
  27. Shtin, S.V., Gabidulin, V.V., and Yusupova, L.I., Study of the composition and structure of zinc-nickel coatings deposited from slightly acidic electrolytes on an iron sublayer, Bull. South Ural State Univer. Ser. Metallurgy, 2016, vol. 16(4), p. 147. http://dx.doi.org/10.14529/met160417
  28. Eliaz, N., Venkatakrishna, K., and Hegde, A., Electroplating and characterization of Zn–Ni, Zn–Co and Zn–Ni–Co alloys, Surf. Coat. Tech., 2010, vol. 205, p. 1969. http://dx.doi.org/10.1016/j.surfcoat.2010.08.077
  29. Rehim, S., Fouad, E., Wahab, S., and Hassan, H., Electroplating of zinc-nickel binary alloys from acetate baths, Electrochim. Acta, 1996, vol. 41, p. 1413. http://dx.doi.org/10.1016/0013-4686(95)00327-4
  30. Lichusina, S., Chodosovskaja, A., Sudavicius, A., Juškėnas, R., Bučinskienė, D., Selskis, A., and Juzeliunas, E., Cobalt-rich Zn–Co alloys: Electrochemical deposition, structure and corrosion resistance, Chemija, 2008, vol. 19, p. 25.
  31. Vasilache, T., Gutt, S., Sandu, I., Vasilache, V., Gutt, G., Risca, I.-M., and Sandu, A.V., Electrochemical Mechanism of Nickel and Zinc-Nickel Alloy Electrodeposition, Recent Patents on Corrosion Sci., 2010, vol. 2, p. 1. http://dx.doi.org/10.2174/1877610801002010001
  32. Hegde, A., Venkatakrishna, K., and Eliaz, N., Electrodeposition of Zn–Ni, Zn–Fe and Zn–Ni–Fe alloys, Surf. Coat. Tech., 2010, vol. 205, p. 2031. http://dx.doi.org/10.1016/j.surfcoat.2010.08.102
  33. Fashu, S. and Khan, R., Recent work on electrochemical deposition of Zn–Ni (–X) alloys for corrosion protection of steel, Anti-Corrosion Methods and Materials, 2018, vol. 66, 16 p. http://dx.doi.org/10.1108/ACMM-06-2018-1957
  34. Thangaraj, V. and Hegde, A., Electrodeposition and compositional behaviour of Zn–Ni alloy, Ind. J. Chem. Tech., 2007, vol. 14, p. 246.
  35. Scharifker, B. and Mostany, J., Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site, J. Electroanal. Chem., 1984, vol. 177, p. 13. http://dx.doi.org/10.1016/0022-0728(84)80207-7
  36. Scharifker, B. and Hills, G., Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 1983, vol. 28, p. 879. http://dx.doi.org/10.1016/0013-4686(83)85163-9
  37. Scharifker, B., Mostany, J., Palomar‐Pardavé, M., and Gonzalez, I., On the theory of the potentiostatic current transient for diffusion-controlled three-dimensional electrocrystallization processes, J. Electrochem. Soc., 1999, vol. 146, p. 1005. http://dx.doi.org/10.1149/1.1391713
  38. Díaz-Morales, O., Mostany, J., Borrás, C., and Scharifker, B., Current transient study of the kinetics of nucleation and diffusion-controlled growth of bimetallic phases, J. Solid State Electrochem., 2013, vol. 17, p. 345. https://doi.org/10.1007/s10008-012-1881-6
  39. Palomar-Pardavé, M., Scharifker, B., Arce, E.M., and Romero-Romo, M., Nucleation and diffusion-controlled growth of electroactive centers: Reduction of protons during cobalt electrodeposition, Electrochim. Acta, 2005, vol. 50(24), p. 4736. http://dx.doi.org/10.1016/j.electacta.2005.03.004
  40. Galus, Z., Fundamentals of electrochemical analysis, Ellis Horwood, New York, 1976, p. 313.
  41. Fukushima, H., Akiyama, T., Higashi, K., Kammel, R., and Karimkhani, M., Electrodeposition behavior of Zn–Ni alloys from sulfate baths over a wide range of current density, Metall, 1988, vol. 42, p. 242.
  42. Ishihara, M., Yumoto, H., Akashi, K., and Kamei, K., Zinc-nickel alloy whiskers electrodeposited from a sulfate bath, Mater. Sci. and Engineering B-advanced Functional Solid-state Mater., 1996, vol. 38, p. 150. http://dx.doi.org/10.1016/0921-5107(95)01429-2
  43. Chouchane, S., Microstructural analysis of low Ni content Zn alloy electrodeposited under applied magnetic field, Surf. Coat. Tech., 2007, vol. 201(14), p. 6212. https://doi.org/10.1016/j.surfcoat.2006.11.015
  44. Ghaziof, S., Kilmartin, P.A., and Gao, W., Electrochemical studies of sol-enhanced Zn–Ni–Al2O3 composite and Zn–Ni alloy coatings, J. Electroanal. Chem., 2015, vol. 755, p. 63. https://doi.org/10.1016/j.jelechem.2015.07.041
  45. Pires, M., The need for a more comprehensive model for the current transient in anomalous electrochemical deposition of metal alloys exemplified by Ni-Fe co-deposition, Portugaliae Electrochim. Acta, 2016, vol. 34, p. 295. https://doi.org/10.4152/pea.201605295
  46. Aldana-González, J., Sampayo-Garrido, A., Oca-Yemha, M., Sánchez, W., Ramírez-Silva, M., Arce-Estrada, E., Romero-Romo, M., and Palomar-Pardavé, M., Electrochemical nucleation and growth of Mn and Mn-Zn Alloy from leached liquors of spent alkaline batteries using a deep eutectic solvent, J. Electrochem. Soc., 2019, vol. 166, p. D199. https://doi.org/10.1149/2.0761906jes
  47. Barreiros, P. and Pires, M., Analysis of the electrodeposition process of Fe-Mn films from sulfate electrolytes, Mater. Res. Express, 2019, vol. 7. https://doi.org/10.1088/2053-1591/ab59e8
  48. Hölzle, M., Retter, U., and Kolb, D., The kinetics of structural changes in Cu adlayers on Au(111), J. Electroanal. Chem., 1994, vol. 371, p. 101. https://doi.org/10.1016/0022-0728(93)03235-H
  49. Garfias Garcia, E., Romero-Romo, M., María, T., Ramírez-Silva, and Palomar-Pardavé, M., Overpotential nucleation and growth of copper onto polycrystalline and single crystal gold electrodes, Int. J. Electrochem. Sci., 2012, vol. 7, p. 3102. https://doi.org/10.1016/S1452-3981(23)13938-1
  50. Altimari, P., Schiavi, P.G., Rubino, A., and Pagnanelli, F., Electrodeposition of cobalt nanoparticles: an analysis of the mechanisms behind the deviation from three-dimensional diffusion-control, J. Electroanal. Chem., 2019, vol. 851, p. 113413. http://dx.doi.org/10.1016/j.jelechem.2019.113413
  51. Manh, T.L., Arce-Estrada, E.M., Mejia-Caballero, I., Rodriguez-Clemente, E., Sanchez, W., Aldana-Gonzalez, J., Lartundo-Rojas, L., Romero-Romo, M., and Palomar-Pardave, M., Iron electrodeposition from Fe(II) ions dissolved in a choline chloride: urea eutectic mixture, J. Electrochem. Soc., 2018, vol. 165(16), p. D808. http://dx.doi.org/10.1149/2.0561816jes
  52. Rezaei, M., Ghorbani, M., and Dolati, A., Electrochemical investigation of electrodeposited Fe–Pd alloy thin films, Electrochim. Acta, 2010, vol. 56, p. 483. http://dx.doi.org/10.1016/j.electacta.2010.09.022
  53. Scharifker, B. and Mostany, J., Nucleation and growth of new phases on electrode surfaces. In Developments in Electrochemistry: Science Inspired by Martin Fleischmann. Chapter: 4; Pletcher, D., Tian, Z.-Q., Williams, D.E., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. https://doi.org/10.1002/9781118694404.ch4
  54. Trejo, G., Ortega, R., and Meas, Y., Nucleation and growth of zinc from chloride concentrated solutions, J. Electrochem. Soc., 1998, vol. 145(12), 4090. https://doi.org/10.1149/1.1838919
  55. Raeissi, K., Saatchi, A., and Golozar, M.A., Nucleation and growth of zinc electrodeposited onto electropolished and mechanically polished steel surfaces, Transactions of the IMF, 2003, vol. 81(6), p. 186. https://doi.org/10.1080/00202967.2003.11871537
  56. Asseli, R., Benaicha, M., Derbal, S., Allam, M., and Dilmi, O., Electrochemical nucleation and growth of Zn–Ni alloys from chloride citrate-based electrolyte, J. Electroanal. Chem., 2019, vol. 847, p. 1. https://doi.org/10.1016/j.jelechem.2019.113261
  57. Song, Y., Tang, J., Hu, J., Liu, Sh., Fu, Y., and Ji, X., Insights into electrodeposition process of nickel from ammonium chloride media with speciation analysis and in situ synchrotron radiation X-ray imaging, Electrochim. Acta, 2016, vol. 210. https://doi.org/10.1016/j.electacta.2016.06.033
  58. Patil, S.F. and Nath, M., Diffusivity of zinc ions in aqueous alkali-metal chlorides, J. Chem. Eng. Data, 1995, vol. 40(1), p. 40. https://doi.org/10.1021/je00017a011

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) Cathodic voltammograms obtained on the Au electrode in 0.08 M NiCl2 + 0.04 M ZnCl2 + 2 M NH4Cl (1–5), 0.04 M ZnCl2 + 2 M NH4Cl (3ʹ), and 0.08 M NiCl2 + 2 M NH4Cl (3ʺ) at different potential scan rates: 2 (1), 5 (2), 10 (3, 3ʹ, 3ʺ), 25 (4), 50 (5) mV/s. (b) Dependence of the maximum current density on the square root of the potential scan rate. (c) Dependence of the maximum potential on the logarithm of the potential scan rate.

Download (122KB)
3. Fig. 2. (a) Cathode chronoamperograms obtained on the Au electrode in 0.08 M NiCl2 + 0.04 M ZnCl2 + 2 M NH4Cl at different deposition potentials Edep = –860 (1), –880 (2), –900 (3), –1000 (4) mV. Empty markers are experimental data, solid lines are the result of nonlinear regression analysis using formula (15). (b) Chronoamperograms reconstructed in Cottrel coordinates.

Download (124KB)
4. Fig. 3. Cathode chronoamperograms obtained on the Au electrode in 0.04 M ZnCl2 + 2 M NH4Cl (a) and 0.08 M NiCl2 + 2 M NH4Cl (b) at deposition potentials E = –860 (1), –880 (2), –900 (3), –1000 (4) mV. Empty markers are experimental data, solid lines are the result of nonlinear regression analysis using formula (14).

Download (128KB)
5. Fig. 4. Change in the atomic fraction of nickel in the coating deposited from 0.08 M NiCl2 + 0.04 M ZnCl2 + 2 M NH4Cl at potentials Edep = –860 (), –880 (), –900 (), –1000 () mV. The dotted line is the result of nonlinear regression analysis using formula (1). The CRL (composition reference line) level corresponds to the atomic fraction of nickel in the case of normal deposition, when the ratio of metal concentrations in the alloy and ions in the solution coincides.

Download (76KB)
6. Fig. 5. Partial current transients of electrocrystallization (1), hydrogen reduction reaction (2) and charging of the double electric layer (3), obtained from the results of nonlinear regression analysis of experimental chronoamperograms on the Au electrode in 0.08 M NiCl2 + 0.04 M ZnCl2 + 2 M NH4Cl (a), 0.04 M ZnCl2 + 2 M NH4Cl (b) and 0.08 M NiCl2 + 2 M NH4Cl (c) at a potential of E = –880 mV.

Download (114KB)
7. Fig. 6. Dependences of the rate constant of the hydrogen reduction reaction (a), the rate constant of the nucleation process (b) and the density of nucleation centers (c) on the cathode potential, found from the results of nonlinear regression analysis of experimental chronoamperograms on the Au electrode obtained in 0.04 M ZnCl2 + 2 M NH4Cl (1), 0.08 M NiCl2 + 2 M NH4Cl (2) and 0.08 M NiCl2 + 0.04 M ZnCl2 + 2 M NH4Cl (3).

Download (399KB)

Copyright (c) 2024 Russian Academy of Sciences