The effect of TiO2 nanoparticles and the “liquid phase therapy” on the resistance of the interphase lithium/polymer electrolyte with the introduction of ionic liquid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of treating a metal lithium surface with 1 M LiN(CF3SO2)2 solution in 1,3-dioxolane/1,2-dimethoxyethane (2:1) mixture on the resistance of the lithium/polymer and lithium/nanocomposite electrolyte based on the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate was studied. It has been shown that “liquid-phase therapy” reduces the resistance at the Li/electrolyte interface by 2.5 times at room temperature and expands the operating temperature range to –30°C. The introduction of TiO2 nanoparticles into the polymer electrolyte, along with “liquid-phase therapy” of both the cathode and the Li-anode, provides a high and stable discharge capacity of the Li//LiFePO4 battery for 100 charge-discharge cycles.

Full Text

Restricted Access

About the authors

G. R. Baymuratova

FRC of Problems of Chemical Physics and Medicinal Chemistry RAS

Author for correspondence.
Email: guzalia.rb@yandex.ru
Russian Federation, Chernogolovka

A. V. Yudina

FRC of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: oyarm@icp.ac.ru
Russian Federation, Chernogolovka

K. G. Khatmullina

FRC of Problems of Chemical Physics and Medicinal Chemistry RAS; National Research University “Moscow Energy Institute”

Email: guzalia.rb@yandex.ru
Russian Federation, Chernogolovka; Moscow

A. A. Slesarenko

FRC of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: guzalia.rb@yandex.ru
Russian Federation, Chernogolovka

O. V. Yarmolenko

FRC of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: oyarm@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Pei, Y., Zhang, Y., Ma, J., Fan, M., Zhang, S., and Wang, J., Ionic Liquids for Advanced Materials, Mater. Today Nano, 2022, vol. 17, p. 100159.
  2. Dong, K., Liu, X., Dong, H., Zhang, X., and Zhang, S., Multiscale Studies on Ionic Liquids, Chem. Rev., 2017, vol. 117, p. 6636.
  3. Chen, N., Zhang, H., Li, L., Chen, R., and Guo, S., Ionogel Electrolytes for High‐Performance Lithium Batteries: A Review, Adv. Energy Mater., 2018, vol. 8, p. 1702675.
  4. Watanabe, M., Thomas, M.L., Zhang, S., Ueno, K., Yasuda, T., and Dokko, K., Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices, Chem. Rev., 2017, vol. 117, p. 7190.
  5. Yu, L. and Chen, G.Z., Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery, Front. Chem., 2019, vol. 7, p. 272.
  6. Tripathi, A.K., Ionic Liquid–Based Solid Electrolytes (Ionogels) for Application in Rechargeable Lithium Battery, Mater. Today Energy, 2021, vol. 20, p. 100643.
  7. Correia, D.M., Fernandes, L.C., Martins, P.M., García‐Astrain, C., Costa, C.M., Reguera, J., and Lanceros‐Méndez, S., Ionic Liquid–Polymer Composites: A New Platform for Multifunctional Applications, Adv. Funct. Mater., 2020, vol. 30, p. 1909736.
  8. Qiu, C., Li, Z., Pan, J., Hong, Y., Li, J., Lin, Y., Shi, K., and Liu, Q., Designing Stable Electrode Interfaces from a Pyrrolidine-Based Electrolyte for Improving LiNi0.8 Co 0.1Mn0.1 O 2 Batteries, Ind. Eng. Chem. Res., 2022, vol. 61, p. 14173.
  9. del Bosque, A., Muñoz, B.K., Sánchez, M., and Ureña, A., Thermomechanically Robust Ceramic/Polymer Nanocomposites Modified with Ionic Liquid for Hybrid Polymer Electrolyte Applications, ACS Appl. Energy Mater., 2022, vol. 5, p. 4247.
  10. Li, M., Liao, Y., Liu, Q., Xu, J., Sun, P., Shi, H., and Li, W., Application of the Imidazolium Ionic Liquid Based Nano-Particle Decorated Gel Polymer Electrolyte for High Safety Lithium Ion Battery, Electrochim. Acta, 2018, vol. 284, p. 188.
  11. Khatmullina, K.G., Slesarenko, N. A., Chernyak, A.V., Baymuratova, G.R., Yudina, A.V., Berezin, M.P., Tulibaeva, G.Z., Slesarenko, A.A., Shestakov, A.F., and Yarmolenko, O.V., New Network Polymer Electrolytes Based on Ionic Liquid and SiO2 Nanoparticles for Energy Storage Systems, Membranes, 2023, vol. 13, p. 548.
  12. Slesarenko, N.A., Chernyak, A.V., Khatmullina, K.G., Baymuratova, G.R., Yudina, A.V., Tulibaeva, G.Z., Shestakov, A.F., Volkov, V.I., and Yarmolenko, O.V., Nanocomposite Polymer Gel Electrolyte Based on TiO2 Nanoparticles for Lithium Batteries, Membranes, 2023, vol. 13, p. 776.
  13. Баймуратова, Г.Р., Хатмуллина, К.Г., Юдина, А.В., Ярмоленко, О.В. Дизайн твердотельного литиевого аккумулятора c LiFePO4-катодом и полимерным гель- электролитом с наночастицами диоксида кремния. Электрохимия. 2022. Т. 58. С. 188. [Baymuratova, G.R., Khatmullina, K.G., Yudina, A.V., and Yarmolenko, O.V., Design of a Solid-State Lithium Battery Based on LiFePO4 Cathode and Polymer Gel Electrolyte with Silicon Dioxide Nanoparticles, Russ. J. Electrochem., 2022, vol. 58, p. 329.]
  14. Wu, J.-Y., Ling, S.-G., Yang, Q., Li, H., Xu, X.-X., and Chen, L.-Q., Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3 – polypropylene (PP) based separator for Li-ion batteries, Chin. Phys. B, 2016, vol. 25, A. 078204.
  15. Gao, H., Xue, L., Xin, S., Park, K., and Goodenough, J.B., A plastic-crystal electrolyte interphase for all-solid-state sodium batteries, Angew. Chem. Int. Ed., 2017, vol. 56, p. 5541.
  16. Basile, A., Bhatt, A., and O’Mullane, A., Stabilizing lithium metal using ionic liquids for long-lived batteries, Nat. Commun., 2016, vol. 7, Article no. ncomms 11794.
  17. Budi, A., Basile, A., Opletal, G., Hollenkamp, A.F., Best, A.S., Rees, R.J., Bhatt, A.I., O’Mullane, A.P., and Russo, S.P., Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide, J. Phys. Chem. C, 2012, vol. 116, p. 19789.
  18. Ярмоленко, О.В., Юдина, А.В., Игнатова, А.А., Шувалова, Н.И., Мартыненко, В.М., Богданова, Л.М., Черняк, А.В., Забродин, В.А., Волков, В.И. Новые полимерные электролиты состава диакрилат полиэтиленгликоля – LiBF4 – тетрафторборат 1-этил-3-метилимидазолия с введением алкиленкарбонатов. Известия АН. Сер. хим. 2015. Т. 64. С. 2505. [Yarmolenko, O.V., Yudina, A.V., Ignatova, A.A., Shuvalova, N.I., Martynenko, V.M., Bogdanova, L.M., Chernyak, A.V., Zabrodin, V.A., and Volkov, V.I., New polymer electrolytes based on polyethylene glycol diacrylate–LiBF4–1-ethyl-3-methylimidazolium tetrafluoroborate with the introduction of alkylene carbonates, Russ. Chem. Bull. (Int. Ed.), 2015, vol. 64, p. 2505.]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Impedance plots of Li//Li cells at 20°C with electrolytes PE (1), PE* (2), NPE (3) and NPE* (4), where * are treated with 1M LiTFSI in DOL/DME, and the corresponding equivalent circuit.

Download (124KB)
3. Fig. 2. Impedance hodographs of Li//Li cells in the temperature range from –30 to 80°C with PE (a) and NPE (b) electrolytes without treatment, with PE* (c) and NPE* (d), treated with 1M LiTFSI in DOL/DME.

Download (268KB)
4. Fig. 3. Characteristics of Li//LiFePO4 cells with PE* (1) and NPE* (2), where (a) charge-discharge profiles for the 5th cycle, (b) dependence of the cathode discharge capacity for cells with PE* (1) and NPE* (2) on the cycle number at a current density of 17 mA/g in the range of 2.6–3.8 V.

Download (106KB)

Copyright (c) 2024 Russian Academy of Sciences