Electrodeposited composite of poly-3,4-ethylenedioxythiophene with fullerenol photoactive in the near-IR range

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of a water-soluble Na+-containing fullerene with hydroxyl groups was studied. Spectral methods for monitoring the progress of electrosynthesis have shown that during the polymerization of 3,4-ethylenedioxythiophene, fullerenol is included in the film composition, regardless of the fullerenol concentrations used in the synthesis. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly-3,4-ethylenedioxythiophene with fullerenol were studied for the first time. A mechanism of photoconductivity has been proposed, related to the fact that during photoexcitation of the composite, electron transfer from the polaron (bipolaron) state of poly-3,4-ethylenedioxythiophene to the LUMO level of fullerenol increases the concentration of photogenerated charge carriers.

Full Text

Restricted Access

About the authors

O. L. Gribkova

Institute of Physical Chemistry and Electrochemistry named after A.N. Frumkin RAS

Author for correspondence.
Email: oxgribkova@gmail.com
Russian Federation, Moscow

I. R. Sayarov

Institute of Physical Chemistry and Electrochemistry named after A.N. Frumkin RAS

Email: oxgribkova@gmail.com
Russian Federation, Moscow

V. A. Kabanova

Institute of Physical Chemistry and Electrochemistry named after A.N. Frumkin RAS

Email: oxgribkova@gmail.com
Russian Federation, Moscow

A. A. Nekrasov

Institute of Physical Chemistry and Electrochemistry named after A.N. Frumkin RAS

Email: oxgribkova@gmail.com
Russian Federation, Moscow

A. R. Tameev

Institute of Physical Chemistry and Electrochemistry named after A.N. Frumkin RAS

Email: tameev@elchem.ac.ru
Russian Federation, Moscow

References

  1. Fan, B., Wang, P., Wang, L., and Shi, G., Polythiophene/Fullerene Bulk Heterojunction Solar Cell Fabricated via Electrochemical Co-Deposition, Sol. Energy Mater. Sol. Cells, 2006, vol. 90, p. 3547. https://doi.org/10.1016/j.solmat.2006.06.042
  2. Nasybulin, E., Cox, M., Kymissis, I., and Levon, K., Electrochemical Codeposition of Poly(Thieno[3,2-b]Thiophene) and Fullerene: An Approach to a Bulk Heterojunction Organic Photovoltaic Device, Synth. Met., 2012, vol. 162, p. 10. https://doi.org/10.1016/j.synthmet.2011.10.024
  3. Reynoso, E., Durantini, A.M., Solis, C.A., Macor, L.P., Otero, L.A., Gervaldo, M.A., Durantini, E.N., and Heredia, D.A., Photoactive Antimicrobial Coating Based on a PEDOT-Fullerene C60 polymeric Dyad, RSC Adv., 2021, vol. 11, p. 23519. https://doi.org/10.1039/d1ra03417k
  4. Suárez, M.B., Aranda, C., Macor, L., Durantini, J., Heredia, D.A., Durantini, E.N., Otero, L., Guerrero A., and Gervaldo, M., Perovskite Solar Cells with Versatile Electropolymerized Fullerene as Electron Extraction Layer, Electrochim. Acta, 2018, vol. 292, p. 697. https://doi.org/10.1016/j.electacta.2018.09.196
  5. Dominguez-Alfaro, A., Jénnifer Gómez, I., Alegret, N., Mecerreyes, D., and Prato, M., 2D and 3D Immobilization of Carbon Nanomaterials Into Pedot Via Electropolymerization of a Functional Bis-Edot Monomer, Polymers, 2021, vol. 13, p. 1. https://doi.org/10.3390/polym13030436
  6. Alegret, N., Dominguez-Alfaro, A., Salsamendi, M., Gomez, I.J., Calvo, J., Mecerreyes, D., and Prato, M., Effect of the Fullerene in the Properties of Thin PEDOT/C60 Films Obtained by Co-Electrodeposition, Inorganica Chim. Acta, 2017, vol. 468, p. 239. https://doi.org/10.1016/j.ica.2017.04.059
  7. Dumitriu, C., Mousavi, Z., Latonen, R.M., Bobacka, J., and Demetrescu, I., Electrochemical Synthesis and Characterization of Poly(3,4- Ethylenedioxythiophene) Doped with Sulfonated Calixarenes and Sulfonated Calixarene-Fullerene Complexes, Electrochim. Acta, 2013, vol. 107, p. 178. https://doi.org/10.1016/j.electacta.2013.05.140
  8. Bobylev, A.G., Kornev, A.B., Bobyleva, L.G., Shpagina, M.D., Fadeeva, I.S., Fadeev, R.S., Deryabin, D.G., Balzarini, J., Troshin, P.A., and Podlubnaya, Z.A., Fullerenolates: Metallated Polyhydroxylated Fullerenes with Potent Anti-Amyloid Activity, Org. Biomol. Chem., 2011, vol. 9, p. 5714. https://doi.org/10.1039/c1ob05067b
  9. Husebo, L.O., Sitharaman, B., Furukawa, K., Kato, T., and Wilson, L.J., Fullerenols Revisited as Stable Radical Anions, J. Amer. Chem. Soc., 2004, vol. 126, p. 12055. https://doi.org/10.1021/ja047593o
  10. Troshin, P.A., Astakhova, A.S., and Lyubovskaya, R.N., Synthesis of Fullerenols from Halofullerenes, Fullerenes Nanotub. Carbon Nanostructures, 2005, vol. 13, p. 331. https://doi.org/10.1080/15363830500237192
  11. Namazian, M., Lin, C.Y., and Coote, M.L., Benchmark Calculations of Absolute Reduction Potential of Ferricinium/Ferrocene Couple in Nonaqueous Solutions, J. Chem. Theory Comput., 2010, vol. 6, p. 2721. https://doi.org/10.1021/ct1003252
  12. Krukiewicz, K., Kruk, A., and Turczyn, R., Evaluation of Drug Loading Capacity and Release Characteristics of PEDOT/Naproxen System: Effect of Doping Ions, Electrochim. Acta, 2018, vol. 289, p. 218. https://doi.org/10.1016/j.electacta.2018.09.011
  13. Gribkova, O.L. and Nekrasov, A.A., Spectroelectrochemistry of Electroactive Polymer Composite Materials, Polymers, 2022, vol. 14, p. 3201. https://doi.org/10.3390/polym14153201
  14. Garreau, S., Duvail, J.L., and Louarn, G., Spectroelectrochemical Studies of Poly(3,4-Ethylenedioxythiophene) in Aqueous Medium, Synth. Met., 2001, vol. 125, p. 325. https://doi.org/10.1016/S0379–6779(01)00397–6
  15. Zozoulenko, I., Singh, A., Singh, S.K., Gueskine, V., Crispin, X., and Berggren, M., Polarons, Bipolarons, and Absorption Spectroscopy of PEDOT, ACS Appl. Polym. Mater., 2019, vol. 1, p. 83. https://doi.org/10.1021/acsapm.8b00061
  16. Janssen, R.A.J., Smilowitz, L., Sariciftci, N.S., and Moses, D., Triplet-State Photoexcitations of Oligothiophene Films and Solutions, J. Chem. Phys., 1994, vol. 101, p. 1787. https://doi.org/10.1063/1.467757
  17. Peintler-Kriván, E., Tóth, P.S., and Visy, C., Combination of in Situ UV–Vis-NIR Spectro-Electrochemical and a. c. Impedance Measurements: A New, Effective Technique for Studying the Redox Transformation of Conducting Electroactive Materials, Electrochem. commun., 2009, vol. 11, p. 1947. https://doi.org/10.1016/j.elecom.2009.08.025
  18. Kabanova, V., Gribkova, O., and Nekrasov, A., Poly(3,4-Ethylenedioxythiophene) Electrosynthesis in the Presence of Mixtures of Flexible-Chain and Rigid-Chain Polyelectrolytes, Polymers, 2021, vol. 13, p. 3866. https://doi.org/10.3390/polym13223866
  19. Nekrasov, A.A., Nekrasova, N. V., Savel’ev, M.A., Khuzin, A.A., Barachevsky, V.A., Tulyabaev, A.R., and Tuktarov, A.R., Electrochemical Investigation of a Photochromic Spiropyran Containing a Pyrrolidinofullerene Moiety, Mendeleev Commun., 2023, vol. 33, p. 505. https://doi.org/10.1016/j.mencom.2023.06.021
  20. Meskers, S.C.J., van Duren, J.K.J., and Janssen, R.A.J., Stimulation of Electrical Conductivity in a π-Conjugated Polymeric Conductor with Infrared Light, J. Appl. Phys., 2002, vol. 92, p. 7041. https://doi.org/10.1063/1.1519948

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure (a) [8] and electronic absorption spectrum (b) of a 0.00034 M aqueous solution of NaFl in a 0.1-cm cuvette.

Download (86KB)
3. Fig. 2. Cyclic voltammogram during deposition of PEDOT film from an aqueous solution of 0.01 M EDOT and 0.00067 M NaFl. The first and every fifth subsequent cycle are shown.

Download (97KB)
4. Fig. 3. Change in potential during GS electropolymerization of 0.01 M EDOT in aqueous solutions of NaFl with concentrations, M: 0.00017 (1), 0.00034 (2), 0.00067 (3) and 0.0014 (4).

Download (68KB)
5. Fig. 4. Electronic absorption spectra of the PEDOT film formed on the working electrode during the polymerization of EDOT in the GS mode at a current density of 0.05 mA/cm2 in a 0.00034 M aqueous solution of NaFl. The optical path in the solution is 1.6 cm.

Download (148KB)
6. Fig. 5. Change in absorption at 700 nm (a) and 400 nm (b) during HS deposition of PEDOT hybrid films in the presence of NaFl at concentrations, M: 0.00017 (1), 0.00034 (2), 0.00067 (3), 0.0014 (4), and in a 0.1 M aqueous solution of NaClO4 (5).

Download (135KB)
7. Fig. 6. Electronic absorption spectra in air of PEDOT composite films electrodeposited in aqueous solutions of NaFl at concentrations, M: 0.00017 (1), 0.00034 (2), 0.00067 (3), 0.0014 (4), and in a 0.1 M aqueous solution of NaClO4 (5).

Download (92KB)
8. Fig. 7. Electron absorption spectra at fixed potentials of the PEDOT – NaFl composite film, measured in 0.5 M NaClO4 aqueous solution.

Download (112KB)
9. Fig. 8. Cyclic voltammograms of the PEDOT – NaFl composite film measured in 0.2 M Bu4NPF6 electrolyte in acetonitrile.

Download (97KB)
10. Fig. 9. AFM images of the surfaces of PEDOT films obtained on an FTO electrode in the presence of NaFl (a) and NaClO4 (b).

Download (325KB)
11. Fig. 10. Diagram of electron levels of PEDOT and NaFl molecules (Fig. 8) participating in the absorption of photons in the IR region of the spectrum. Blue arrows show the excitation of an electron from the ground level to the level of a polaron or bipolaron with transfer to the LUMO level of the electron acceptor – fullerenol. The levels of polarons and bipolarons are given according to calculations [15].

Download (86KB)

Copyright (c) 2024 Russian Academy of Sciences