Влияние наноразмерного оксидного наполнителя на структуру и проводимость композита (1 – x)(LiClO4–NaClO4)–xAl2O3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методами спектроскопии комбинационного рассеяния света (КРС), дифференциальной сканирующей калориметрии (ДСК) и импедансной спектроскопии исследованы физико-химические свойства эвтектической системы 78.2LiClO4–21.8NaClO4 и ее гетерогенных композитов с наноразмерным порошком оксида алюминия при различных температурах, фазовых состояниях и концентрациях Al2O3. Добавка Al2O3 приводит к увеличению ионной проводимости и уменьшению энергии активации. Методом спектроскопии КРС показано, что добавка оксида алюминия приводит к образованию аморфной фазы за счет “разрушения” кристаллической фазы перхлората натрия.

Об авторах

З. Ю. Кубатаев

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

М. М. Гафуров

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

К. Ш. Рабаданов

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

А. М. Амиров

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

М. А. Ахмедов

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

М. Г. Какагасанов

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Автор, ответственный за переписку.
Email: kzu-05@ya.ru
Россия, Махачкала

Список литературы

  1. Duan, Y., Bai, X., Yu, T., Rong, Y., Wu, Y., and Wang, X., Research progress and prospect in typical sulfide solid-state electrolytes, J. Energy Storage, 2022, vol. 55, p. 105382. https://doi.org/10.1016/j.est.2022.105382
  2. Han, L., Lehmann, M.L., Zhu, J., Liu, T., Zhou, Z., Tang, X., Heish, C.Te, Sokolov, A.P., Cao, P., Chen, X.C., and Saito, T., Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries, Frontiers in Energy Research, 2020, p. 1. https://doi.org/10.3389/fenrg.2020.00202
  3. Пантюхина, М.И., Плаксин, С.В., Саетова, Н.С., Расковалов, А.А. Новый твердый электролит Li8 ‒ xZr1 – xTaxO6 (x = 0–0.5) для литиевых источников тока. Электрохимия. 2019. Т. 55. С. 1543. [Pantyukhina, M.I., Plaksin, S.V., Saetova, N.S., and Raskovalov, A.A., New solid elerolyte Li8 – xZr1 – xTaxO6 (x = 0–0.5) for lithium power sources, Russ. J. Electrochem., 2019, vol. 55, p. 1269.]
  4. Joos, M., Conrad, M., Moudrakovski, I., Terban, M.W., Rad, A., Kaghazchi, P., Merkle, R., Dinnebier, R.E., Schleid, T., and Maier, J., Ion Transport Mechanism in Anhydrous Lithium Thiocyanate LiSCN Part II: Frequency Dependence and Slow Jump Relaxation, Phys. Chem. Chem. Phys., 2022, vol. 24, p. 20198. https://doi.org/10.1039/D2CP01837C
  5. Liang, C.C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J. Electrochem. Soc., 1973, vol. 120, p. 1289.
  6. Uvarov, N.F, Ulihin, A.S., and Mateyshina, Y.G., Nanocomposite Alkali-Ion Solid Electrolytes, Advanced Nanomaterials for Catalysis and Energy, 2022, p. 393. https://doi.org/10.1039/D2CP01837C
  7. Chen, L., Cros, C., Castagnet, R., and Hagenmuller, P., Electrical conductivity enhancement in an eutectic system containing dispersed second phase particles, Solid State Ionics, 1988, vol. 31, p. 209.
  8. Рабаданов, К.Ш., Гафуров, М.М., Кубатаев, З.Ю., Амиров, А.М., Ахмедов, М.А., Шабанов, Н.С., Атаев, М.Б. Ионная проводимость и колебательные спектры композитов LiNO3–KNO3 + Al2O3. Электрохимия. 2019. Т. 55. С. 750. [Rabadanov, K.S., Gafurov, M.M., Kubataev, Z.Y., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., and Ataev, M.B., Ion Conductivity and vibrational spectra of LiNO3–KNO3 + Al2O3 composites, Russ. J. Electrochem., 2019, vol. 55, p. 573.]
  9. Закирьянова, И.Д., Николаева, Е.В., Бове, А.Л., Антонов. Б.Д. Электропроводность и спектры комбинационного рассеяния света дисперсных систем α-Al2O3–расплав Li2CO3–Na2CO3–K2CO3–NaCl. Расплавы. 2018. № 1. С. 80. https://doi.org/10.7868/S0235010618010097
  10. Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., Kubataev, Z.Y., and Rabadanova, D.I., Research of the structure and dynamic interactions of particles in the Li0.42K0.58NO3–R (R = α-Al2O3, γ-Al2O3, SiO2) and (LiNO3–LiClO4)–γ-Al2O3 composites in various temperature condition and phase states, Spectrochim. Acta, 2021, vol. 257, p. 119765.
  11. Ulihin, A.S., Uvarov, N.F., Mateyshina, Y.G., Brezhneva, L.I., and Matvienko, A.A., Composite solid electrolytes LiClO4–Al2O3, Solid State Ionics, 2006, vol. 177, p. 2787.
  12. Gafurov, M.M. and Rabadanov, K.S., High-temperature vibrational spectroscopy of molten electrolytes, Applied Spectroscopy Reviews, 2022, p. 1. https://doi.org/10.1080/05704928.2022.2048305
  13. Sulaiman, M., Che Su, N., and Mohamed, N., Sol-gel synthesis and characterization of β-MgSO4:Mg(NO3)2–MgO composite solid electrolyte, Ionics, 2017, vol. 23, p. 443. https://doi.org/10.1007/s11581-016-1854-3
  14. Wu, Cheng-Wei, Ren, Xue, Zhou, Wu-Xing, Xie, Guofeng, and Zhang, Gang, Thermal stability and thermal conductivity of solid electrolytes, APL Materials, 2022, vol. 10, p. 040902. https://doi.org/10.1063/5.0089891
  15. Amirov, A.M., Suleymanov, S.I., Gafurov, M.M., Ataev, M.B., and Rabadanov, K.S. Study of the MNO3–Al2O3 nanocomposites by differential scanning calorimetry, J. Thermal Analysis and Calorimetry, 2022, vol. 147, p. 9283. https://doi.org/10.1007/s10973-022-11256-0
  16. Накамото, К. ИК-спектры и спектры КР неорганических и координационных соединений (пер. с англ.). М.: Мир, 1991. С. 536. [Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, 1991. p. 536.]

Дополнительные файлы


© З.Ю. Кубатаев, М.М. Гафуров, К.Ш. Рабаданов, А.М. Амиров, М.А. Ахмедов, М.Г. Какагасанов, 2023