On the Nature of the Nonmonotonic Dependence of the Pressure Flame Limits on Temperature CH4 + 2O2 Mixtures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the present work, for the first time for stoichiometric methane–oxygen mixtures, two numerical kinetic methods reproduce the nonmonotonic boundary of the “three pressure limits” region obtained by N.N. Semenov’ coworkers experimentally in a wide pressure range ~20–600 Torr. In where take place the llow pressure ignition peninsula, range of parameters, the simulation of self-ignition delays was carried out. In this case, a nonlinear scheme of methane oxidation (150 reactions) was used to calculate ignition delays. According to the linear part of the same scheme (~20 reactions of the methyl peroxide cycle), formulas for the corresponding Jacobi matrix determinant were obtained for the first time, and for each given temperature, from the equation that determines its zero, three pressure roots were found, from which the boundary line of the region, nonmonotonic in pressure, was constructed self-ignition. Satisfactory convergence of the experimental and calculated data is shown both in terms of delay times and in terms of the position of the limits in the P–T space.

作者简介

A. Karnaukh

Federal Research Center for Problems of Chemical Physics and Medical Chemistry RAS

编辑信件的主要联系方式.
Email: karnau@icp.ac.ru
Russia, 142432, Moscow region, Chernogolovka, prosp. Acad. Semenova, 1

A. Ivanova

Federal Research Center for Problems of Chemical Physics and Medical Chemistry RAS

Email: karnau@icp.ac.ru
Russia, 142432, Moscow region, Chernogolovka, prosp. Acad. Semenova, 1

参考

  1. Semenoff N. // ZS. f. phys. Ch. (B). 1931. V. 11. P. 464.
  2. Hinshelwood C.N., Dalton R.H. // Proc. Roy. Soc. A. 1929. V. 125. P. 294.
  3. Neiman M.B., Serbinov A.I. // Nature. 1931. Dec.19. V. 128. No. 3242. P. 1041.
  4. Нейман М.Б., Сербинов А.И. // ЖФХ. 1932. Т. 3. № 1. С. 75.
  5. Нейман М.Б., Сербинов А.И. // ЖФХ. 1933. Т. 4. № 1. С. 41.
  6. Ковальский А., Садовников П. // ЖФХ. 1932. Т. 3. № 4. С. 17.
  7. Vanpee M.C.R. // Acad. Sci. Paris. 1956. V. 243. P. 8041.
  8. Liu J., Yu R., Ma B., Tang C. // ACS Omega. 2020. V. 5. P. 19268.
  9. Liang W., Liu Z., Law C.K. // Proc. Combust. Inst. 2019. V. 37. P. 493.
  10. Semenoff N.N. // Trans. Faraday Soc. 1932. P. 818.
  11. Карнаух А.А., Иванова A.Н. // Кинетика и Катализ. 2005. Т. 46. № 1. С. 14.
  12. Карнаух А.А., Иванова A.Н. // Кинетика и Катализ. 2020. Т. 61. № 4. С. 489.
  13. Иванова А.Н., Тарнопольский Б.Л., Карнаух А.А. // Кинетика и Катализ. 1997. Т. 38. С. 485.
  14. Налбандян А.Б., Воеводский В.В. Механизм окисления и горения. Москва–Ленинград: Изд-во АН СССР, 1949.
  15. Азатян В.В. Цепные реакции горения, взрыва и детонации в газах. Химические методы управления. Монография, глава VI, п. 2. Москва: РАН, 2020. 360 c. ISBN 978-5-907036-72-2.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (69KB)
3.

下载 (52KB)